• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Trắc nghiệm Phương trình mặt phẳng / Trong không gian \(Oxyz\), cho ba điểm \(A\left( {1;2;1} \right)\), \(B\left( {3; – 1;1} \right)\) và \(C\left( { – 1; – 1;1} \right)\). Gọi \(\left( {{S_1}} \right)\) là mặt cầu có tâm \(A\), bán kính bằng 2; \(\left( {{S_2}} \right)\) và \(\left( {{S_3}} \right)\) là hai mặt cầu có tâm lần lượt là \(B,\,\,C\) và bán kính đều bằng \(1\). Hỏi có bao nhiêu mặt phẳng tiếp xúc với cả ba mặt cầu \(\left( {{S_1}} \right)\), \(\left( {{S_2}} \right)\), \(\left( {{S_3}} \right)\)?

Trong không gian \(Oxyz\), cho ba điểm \(A\left( {1;2;1} \right)\), \(B\left( {3; – 1;1} \right)\) và \(C\left( { – 1; – 1;1} \right)\). Gọi \(\left( {{S_1}} \right)\) là mặt cầu có tâm \(A\), bán kính bằng 2; \(\left( {{S_2}} \right)\) và \(\left( {{S_3}} \right)\) là hai mặt cầu có tâm lần lượt là \(B,\,\,C\) và bán kính đều bằng \(1\). Hỏi có bao nhiêu mặt phẳng tiếp xúc với cả ba mặt cầu \(\left( {{S_1}} \right)\), \(\left( {{S_2}} \right)\), \(\left( {{S_3}} \right)\)?

Ngày 03/05/2021 Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Phuong trinh mp VDC, TN THPT 2021

DẠNG TOÁN 50: PHƯƠNG TRÌNH MẶT PHẲNG (Tìm hệ số của phương trình mặt phẳng thỏa mãn các điều kiện cho trước lồng ghép với khối tròn xoay)
===============

Trong không gian \(Oxyz\), cho ba điểm \(A\left( {1;2;1} \right)\), \(B\left( {3; – 1;1} \right)\) và \(C\left( { – 1; – 1;1} \right)\). Gọi \(\left( {{S_1}} \right)\) là mặt cầu có tâm \(A\), bán kính bằng 2; \(\left( {{S_2}} \right)\) và \(\left( {{S_3}} \right)\) là hai mặt cầu có tâm lần lượt là \(B,\,\,C\) và bán kính đều bằng \(1\). Hỏi có bao nhiêu mặt phẳng tiếp xúc với cả ba mặt cầu \(\left( {{S_1}} \right)\), \(\left( {{S_2}} \right)\), \(\left( {{S_3}} \right)\)?
A.\(5\).
B. \(7\).
C. \(6\).
D. \(8\).
LỜI GIẢI CHI TIẾT
Gọi phương trình mặt phẳng \(\left( P \right)\) tiếp xúc với cả ba mặt cầu đã cho có phương trình là: \(ax + by + cz + d = 0\) ( đk: \({a^2} + {b^2} + {c^2} > 0\)).
Khi đó ta có hệ điều kiện sau: \(\left\{ \begin{array}{l}d\left( {A;\left( P \right)} \right) = 2\\d\left( {B;\left( P \right)} \right) = 1\\d\left( {C;\left( P \right)} \right) = 1\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}\frac{{\left| {a + 2b + c + d} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }} = 2\\\frac{{\left| {3a – b + c + d} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }} = 1\\\frac{{\left| { – a – b + c + d} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }} = 1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}\left| {a + 2b + c + d} \right| = 2\sqrt {{a^2} + {b^2} + {c^2}} \,\,\left( 1 \right)\\\left| {3a – b + c + d} \right| = \sqrt {{a^2} + {b^2} + {c^2}} \,\,\,\,\,\left( 2 \right)\\\left| { – a – b + c + d} \right| = \sqrt {{a^2} + {b^2} + {c^2}} \,\,\,\,\,\left( 3 \right)\end{array} \right.\,\,\,\,\,\left( * \right)\).
Từ \(\left( 2 \right)\)và \(\left( 3 \right)\) ta có: \(\left| {3a – b + c + d} \right| = \left| { – a – b + c + d} \right|\)
\( \Leftrightarrow \left[ \begin{array}{l}3a – b + c + d = – a – b + c + d\\3a – b + c + d = a + b – c – d\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}a = 0\\a – b + c + d = 0\end{array} \right.\).
Với \(a = 0\) thì ta có:
\(\left( * \right) \Leftrightarrow \left\{ \begin{array}{l}\left| {2b + c + d} \right| = 2\sqrt {{b^2} + {c^2}} \\\left| {2b + c + d} \right| = 2\left| { – b + c + d} \right|\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}\left| {2b + c + d} \right| = 2\sqrt {{b^2} + {c^2}} \\\left[ \begin{array}{l}4b – c – d = 0\\c + d = 0\end{array} \right.\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}c + d = 0 \Rightarrow c = d = 0,b \ne 0\\c + d = 4b,\,\,\,\,c = \pm 2\sqrt 2 b\end{array} \right.\), do đó có 3 mặt phẳng.
Với \(a – b + c + d = 0\) thì ta có
\(\left( * \right) \Leftrightarrow \left\{ \begin{array}{l}\left| {3b} \right| = 2\sqrt {{a^2} + {b^2} + {c^2}} \\\left| {2a} \right| = \sqrt {{a^2} + {b^2} + {c^2}} \end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}\left| {3b} \right| = 4\left| a \right|\\\left| {2a} \right| = \sqrt {{a^2} + {b^2} + {c^2}} \end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}\left| b \right| = \frac{4}{3}\left| a \right|\\\left| c \right| = \frac{{\sqrt {11} }}{3}\left| a \right|\end{array} \right.\),
do đó có 4 mặt phẳng thỏa mãn bài toán.
Vậy có 7 mặt phẳng thỏa mãn bài toán.
========

I. KIẾN THỨC CẦN NHỚ:
1. Phương trình mặt phẳng
• Mặt phẳng \(\left( P \right)\) đi qua điểm \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\), có vectơ pháp tuyến \(\overrightarrow n = \left( {A;B;C} \right),\;{A^2} + {B^2} + {C^2} \ne 0\), có phương trình là : \(A\left( {x – {x_0}} \right) + B\left( {y – {y_0}} \right) + C\left( {z – {z_0}} \right) = 0\)
2.Khai triển củaphương trình tổng quát
Dạng khai triển của phương trình tổng quát là: \(Ax + By + Cz + D = 0\) (trong đó A,B,C không đồng thời bằng 0)

Bài liên quan:

  1. Cắt hình trụ \((T)\) bởi mặt phẳng song song với trục và cách trục một khoảng bằng \(2a\) , ta được thiết diện là một hình vuông có diện tích bẳng \(16{a^2}\) . Diện tích xung quanh của \((T)\) bằng

  2. Cho khối lăng trụ tam giác đều \(ABC.A’B’C’\) có cạnh bên bằng \(2a\) , góc giữa hai mặt phẳng \(\left( {A’BC} \right)\) và \(\left( {ABC} \right)\) bằng
  3. Trong không gian \(Oxyz\) cho điểm \(A\left( {1;1;1} \right)\) và đường thẳng \(d:\frac{{x – 1}}{1} = \frac{y}{2} = \frac{{z + 1}}{1}\) . Đường thẳng đi qua \(A\) , cắt trục \(Oy\) và vuông góc với \(d\) có phương trình là

  4. Cho hàm số \(f\left( x \right) = a{x^4} + b{x^3} + c{x^2}\left( {a,b,c \in \mathbb{R}} \right).\) Hàm số \(y = f’\left( x \right)\) có đồ thị như trong hình bên. Số nghiệm thực phân biệt của phương trình \(2f\left( x \right) + 3 = 0\)

  5. Có bao nhiêu số nguyên \(x\) thỏa mãn \(\left[ {{{\log }_2}\left( {{x^2} + 1} \right) – {{\log }_2}\left( {x + 21} \right)} \right]\left( {16 – {2^{x – 1}}} \right) \ge 0\) ?

  6. Cho hàm số \(f\left( x \right) = {x^4} – 10{x^3} + 24{x^2} + \left( {4 – m} \right)x\) , với \(m\) là tham số thực. Có bao nhiêu giá trị nguyên của \(m\) để hàm số \(g\left( x \right) = f\left( {\left| x \right|} \right)\) có đúng \(7\) điểm cực trị.

  7. Cho hai hàm số \(f(x) = a{x^4} + b{x^3} + c{x^2} + x\) và \(g(x) = m{x^3} + n{x^2} – 2x\) ; với \(a,b,c,m,n \in \mathbb{R}\) . Biết hàm số \(y = f(x) – g(x)\) có ba điểm cực trị là \( – 1,2\) và 3. Diện tích hình phẳng giới hạn bởi hai đương \(y = f'(x)\) và \(y = g'(x)\) bằng

  8. Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { – 1;6} \right]\) và có đồ thị là đường gấp khúc \(ABC\) trong hình bên. Biết \(F\) là nguyên hàm của \(f\) thỏa mãn \(F\left( { – 1} \right) =  – 1\) . Giá trị của \(F\left( 5 \right) + F\left( 6 \right)\) bằng 

  9. Có bao nhiêu số nguyên dương y sao cho tồn tại số thực \(x \in \left( {1;\,6} \right)\) thỏa mãn \(4\left( {x – 1} \right){e^x} = y\left( {{e^x} + xy – 2{x^2} – 3} \right)\) ?
  10. Trong không gian \(Oxyz\) cho mặt cầu \((S):{(x – 2)^2} + {(y – 3)^2} + {(z + 1)^2} = 1\) . Có bao nhiêu điểm \(M\) thuộc \((S)\) sao cho tiếp diện của \((S)\) tại \(M\) cắt các trục \(Ox,\,Oy\) lần lượt tại các điềm \(A(a;\,\,0;\,\,0),B(0;\,\,b;\,\,0)\) mà \(a,b\) là các số nguyên dương và \(\widehat {AMB} = {90^ \circ }\) .
  11. Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và có đồ thị là đường cong như hình vẽ. 

    Đặt \(g\left( x \right) = 3f\left( {f\left( x \right)} \right) + 4\). Số điểm cực trị của hàm số \(g\left( x \right)\) là

  12. Cho hàm số \(y = f(x)\) xác định liên tục trên \(\mathbb{R}\) có đồ thị như hình vẽ bên.

    Số nghiệm thuộc đoạn \(\left[ {0;4} \right]\) của phương trình \(\left| {f({x^2} – 2x)} \right| = 2\) là

  13. Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị như hình vẽ dưới đây.

    Số điểm cực trị của hàm số \(g\left( x \right) = f\left( {2{x^3} + 3{x^2}} \right)\) là

  14. [SỞ BN L1] Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ.
  15. [KIM THANH HẢI DƯƠNG 2020] Cho hàm số \(y = f\left( x \right)\)có bảng biến thiên sau

    Số nghiệm thực của phương trình \(5f\left( {1 – 2x} \right) + 1 = 0\)

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.