• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Trắc nghiệm Thể tích đa diện

Cho khối lập phương \(ABCD.{A_1}{B_1}{C_1}{D_1}\) có cạnh là \(1.\) Thể tích V của khối chóp \(DAB{C_1}{D_1}\) bằng

Ngày 04/06/2023 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich hinh chop hinh lang tru

Cho khối lập phương \(ABCD.{A_1}{B_1}{C_1}{D_1}\) có cạnh là \(1.\) Thể tích V của khối chóp \(DAB{C_1}{D_1}\) bằng A. \(\frac{1}{4}\). B. \(\frac{{\sqrt 2 }}{6}\). C. \(\frac{{\sqrt 2 }}{3}\). D. \(\frac{1}{3}\) Lời giải: \({V_{D.AB{C_1}{D_1}}} = {V_{AD{D_1}.CB{C_1}}} - {V_{{C_1}.BCD}} = \frac{1}{2}V - \frac{1}{6}V = \frac{1}{3}V = … [Đọc thêm...] vềCho khối lập phương \(ABCD.{A_1}{B_1}{C_1}{D_1}\) có cạnh là \(1.\) Thể tích V của khối chóp \(DAB{C_1}{D_1}\) bằng

Cho hình hộp \(ABCD.A’B’C’D’\) có\(AB = 4a,\,\,BC = a\sqrt 3 ,\,\,\widehat {ABC} = {60^0}\). Hình chiếu vuông góc của điểm \(A’\) lên mặt phẳng \(\left( {ABCD} \right)\) là tâm của hình bình hành \(ABCD\). Biết góc giữa hai mặt phẳng \(\left( {ABB’A’} \right)\) và \(\left( {A’B’C’D’} \right)\) bằng \({60^0}\). Thể tích của hình hộp đã cho bằng

Ngày 04/06/2023 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich da dien VDC, The tich hinh chop hinh lang tru

Cho hình hộp \(ABCD.A'B'C'D'\) có\(AB = 4a,\,\,BC = a\sqrt 3 ,\,\,\widehat {ABC} = {60^0}\). Hình chiếu vuông góc của điểm \(A'\) lên mặt phẳng \(\left( {ABCD} \right)\) là tâm của hình bình hành \(ABCD\). Biết góc giữa hai mặt phẳng \(\left( {ABB'A'} \right)\) và \(\left( {A'B'C'D'} \right)\) bằng \({60^0}\). Thể tích của hình hộp đã cho bằng A. \(\frac{{{a^3}\sqrt 3 … [Đọc thêm...] vềCho hình hộp \(ABCD.A’B’C’D’\) có\(AB = 4a,\,\,BC = a\sqrt 3 ,\,\,\widehat {ABC} = {60^0}\). Hình chiếu vuông góc của điểm \(A’\) lên mặt phẳng \(\left( {ABCD} \right)\) là tâm của hình bình hành \(ABCD\). Biết góc giữa hai mặt phẳng \(\left( {ABB’A’} \right)\) và \(\left( {A’B’C’D’} \right)\) bằng \({60^0}\). Thể tích của hình hộp đã cho bằng

Cho hình chóp \(S.ABC\) có \(ABC\) là tam giác vuông tại \(A\),\(AB = a\sqrt 3 ,AC = a\). Biết khoảng cách từ \(A\) đến mặt phẳng \((SBC)\) bằng \(\frac{{\sqrt 3 a}}{4}\), từ \(B\) đến mặt phẳng \((SAC)\) bằng \(\frac{{\sqrt 3 a}}{2}\), từ \(C\) đến mặt phẳng \((SAB)\) bằng \(\frac{{\sqrt 2 a}}{2}\) và hình chiếu của \(S\)lên mặt phẳng \((ABC)\) nằm trong tam giác \(ABC\). Tính thể tích khối chóp \(S.ABC\).

Ngày 04/06/2023 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich da dien VDC, The tich hinh chop hinh lang tru

Cho hình chóp \(S.ABC\) có \(ABC\) là tam giác vuông tại \(A\),\(AB = a\sqrt 3 ,AC = a\). Biết khoảng cách từ \(A\) đến mặt phẳng \((SBC)\) bằng \(\frac{{\sqrt 3 a}}{4}\), từ \(B\) đến mặt phẳng \((SAC)\) bằng \(\frac{{\sqrt 3 a}}{2}\), từ \(C\) đến mặt phẳng \((SAB)\) bằng \(\frac{{\sqrt 2 a}}{2}\) và hình chiếu của \(S\)lên mặt phẳng \((ABC)\) nằm trong tam giác \(ABC\). Tính … [Đọc thêm...] vềCho hình chóp \(S.ABC\) có \(ABC\) là tam giác vuông tại \(A\),\(AB = a\sqrt 3 ,AC = a\). Biết khoảng cách từ \(A\) đến mặt phẳng \((SBC)\) bằng \(\frac{{\sqrt 3 a}}{4}\), từ \(B\) đến mặt phẳng \((SAC)\) bằng \(\frac{{\sqrt 3 a}}{2}\), từ \(C\) đến mặt phẳng \((SAB)\) bằng \(\frac{{\sqrt 2 a}}{2}\) và hình chiếu của \(S\)lên mặt phẳng \((ABC)\) nằm trong tam giác \(ABC\). Tính thể tích khối chóp \(S.ABC\).

Cho hình lăng trụ \(ABC.A’B’C’\)có \(A’A = A’B = A’C = a\), tam giác \(ABC\) vuông cân tại A và góc tạo bởi cạnh bên \(AA’\) với mp(ABC) là 600. Tính diện tích hình tròn giao tuyến của hai mặt cầu ngoại tiếp tứ diện \(A’ABC\) và \(CA’B’C’\).

Ngày 04/06/2023 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich hinh chop hinh lang tru

Cho hình lăng trụ \(ABC.A'B'C'\)có \(A'A = A'B = A'C = a\), tam giác \(ABC\) vuông cân tại A và góc tạo bởi cạnh bên \(AA'\) với mp(ABC) là 600. Tính diện tích hình tròn giao tuyến của hai mặt cầu ngoại tiếp tứ diện \(A'ABC\) và \(CA'B'C'\). A. \(\frac{{\pi .{a^2}}}{2}\). B. \(\frac{{\pi .{a^2}}}{3}\). C. \(\pi .{a^2}\). D. \(\frac{{\pi .{a^2}}}{4}\). Lời … [Đọc thêm...] vềCho hình lăng trụ \(ABC.A’B’C’\)có \(A’A = A’B = A’C = a\), tam giác \(ABC\) vuông cân tại A và góc tạo bởi cạnh bên \(AA’\) với mp(ABC) là 600. Tính diện tích hình tròn giao tuyến của hai mặt cầu ngoại tiếp tứ diện \(A’ABC\) và \(CA’B’C’\).

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang vuông tại \(A\) và \(D\), \(AB = 3a,{\rm{ }}AD = DC = a.\) Gọi \(I\) là trung điểm của \(AD\), biết hai mặt phẳng \(\left( {SBI} \right)\) và \(\left( {SCI} \right)\) cùng vuông góc với đáy và đường thẳng \(SC\) tạo với đáy một góc \({60^0}.\) Gọi \(M\) điểm trên đoạn\(AB\) sao cho \(AM = 2a\). Khoảng cách giữa \(MD\) và \(SC\) bằng

Ngày 04/06/2023 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich hinh chop hinh lang tru

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang vuông tại \(A\) và \(D\), \(AB = 3a,{\rm{ }}AD = DC = a.\) Gọi \(I\) là trung điểm của \(AD\), biết hai mặt phẳng \(\left( {SBI} \right)\) và \(\left( {SCI} \right)\) cùng vuông góc với đáy và đường thẳng \(SC\) tạo với đáy một góc \({60^0}.\) Gọi \(M\) điểm trên đoạn\(AB\) sao cho \(AM = 2a\). Khoảng cách giữa \(MD\) và … [Đọc thêm...] vềCho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang vuông tại \(A\) và \(D\), \(AB = 3a,{\rm{ }}AD = DC = a.\) Gọi \(I\) là trung điểm của \(AD\), biết hai mặt phẳng \(\left( {SBI} \right)\) và \(\left( {SCI} \right)\) cùng vuông góc với đáy và đường thẳng \(SC\) tạo với đáy một góc \({60^0}.\) Gọi \(M\) điểm trên đoạn\(AB\) sao cho \(AM = 2a\). Khoảng cách giữa \(MD\) và \(SC\) bằng

Cho hình hộp chữ nhật\(ABCD.A’B’C’D’\). Khoảng cách giữa \(AB\) và \(B’C\) là \(\frac{{2a\sqrt 5 }}{5}\), giữa \(BC\) và \(AB’\) là \(\frac{{2a\sqrt 5 }}{5}\), giữa \(AC\) và \(BD’\) là \(\frac{{a\sqrt 3 }}{3}\). Thể tích của khối hộp đó là:

Ngày 04/06/2023 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich hinh chop hinh lang tru

Cho hình hộp chữ nhật\(ABCD.A'B'C'D'\). Khoảng cách giữa \(AB\) và \(B'C\) là \(\frac{{2a\sqrt 5 }}{5}\), giữa \(BC\) và \(AB'\) là \(\frac{{2a\sqrt 5 }}{5}\), giữa \(AC\) và \(BD'\) là \(\frac{{a\sqrt 3 }}{3}\). Thể tích của khối hộp đó là: A. \(2{a^3}\). B. \(4{a^3}\). C. \({a^3}\). D. \(8{a^3}\) Lời giải: Đặt \(AB = x\), \(AD = y\), \(AA' = z\). Gọi … [Đọc thêm...] vềCho hình hộp chữ nhật\(ABCD.A’B’C’D’\). Khoảng cách giữa \(AB\) và \(B’C\) là \(\frac{{2a\sqrt 5 }}{5}\), giữa \(BC\) và \(AB’\) là \(\frac{{2a\sqrt 5 }}{5}\), giữa \(AC\) và \(BD’\) là \(\frac{{a\sqrt 3 }}{3}\). Thể tích của khối hộp đó là:

Cho khối lăng trụ \(ABC.A’B’C’\), khoảng cách từ \(C\) đến \(BB’\) là \(\sqrt 5 \), khoảng cách từ \(A\) đến \(BB’\) và \(CC’\) lần lượt là \(1;\,\,2\). Hình chiếu vuông góc của \(A\) lên mặt phẳng\(A’B’C’\) là trung điểm \(M\) của \(B’C’\), \(A’M = \frac{{\sqrt {15} }}{3}\). Thể tích của khối lăng trụ đã cho bằng

Ngày 04/06/2023 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich hinh chop hinh lang tru

Cho khối lăng trụ \(ABC.A'B'C'\), khoảng cách từ \(C\) đến \(BB'\) là \(\sqrt 5 \), khoảng cách từ \(A\) đến \(BB'\) và \(CC'\) lần lượt là \(1;\,\,2\). Hình chiếu vuông góc của \(A\) lên mặt phẳng\(A'B'C'\) là trung điểm \(M\) của \(B'C'\), \(A'M = \frac{{\sqrt {15} }}{3}\). Thể tích của khối lăng trụ đã cho bằng A. \(\frac{{\sqrt {15} }}{3}\). B. \(\frac{{2\sqrt 5 … [Đọc thêm...] vềCho khối lăng trụ \(ABC.A’B’C’\), khoảng cách từ \(C\) đến \(BB’\) là \(\sqrt 5 \), khoảng cách từ \(A\) đến \(BB’\) và \(CC’\) lần lượt là \(1;\,\,2\). Hình chiếu vuông góc của \(A\) lên mặt phẳng\(A’B’C’\) là trung điểm \(M\) của \(B’C’\), \(A’M = \frac{{\sqrt {15} }}{3}\). Thể tích của khối lăng trụ đã cho bằng

Cho lăng trụ đều $A B C \cdot A^{\prime} B^{\prime} C^{\prime}$. Biết rằng góc giữa $\left(A^{\prime} B C\right)$ và $(A B C)$ là $30^{\circ}$, tam giác $A^{\prime} B C$ có diện tích bằng 8. Tính thể tích khối lăng trụ $A B C \cdot A^{\prime} B^{\prime} C^{\prime}$

Ngày 27/05/2023 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich da dien VDC

Cho lăng trụ đều $A B C \cdot A^{\prime} B^{\prime} C^{\prime}$. Biết rằng góc giữa $\left(A^{\prime} B C\right)$ và $(A B C)$ là $30^{\circ}$, tam giác $A^{\prime} B C$ có diện tích bằng 8. Tính thể tích khối lăng trụ $A B C \cdot A^{\prime} B^{\prime} C^{\prime}$.A. $8 \sqrt{3}$.B. $16 \sqrt{3}$.C. $9 \sqrt{3}$.D. $12 \sqrt{3}$. LỜI GIẢI Gọi $M$ là trung điểm $B C$. Ta có … [Đọc thêm...] vềCho lăng trụ đều $A B C \cdot A^{\prime} B^{\prime} C^{\prime}$. Biết rằng góc giữa $\left(A^{\prime} B C\right)$ và $(A B C)$ là $30^{\circ}$, tam giác $A^{\prime} B C$ có diện tích bằng 8. Tính thể tích khối lăng trụ $A B C \cdot A^{\prime} B^{\prime} C^{\prime}$

Đề toán 2022 [Mức độ 2] Cho khối lăng trụ đứng \(ABC.A’B’C’\) có đáy \(ABC\)là tam giác vuông cân tại \(A\), cạnh bên \(AA’ = 2a\), góc giữa hai mặt phẳng \(\left( {A’BC} \right)\) và \(\left( {ABC} \right)\) bằng \({30^0}\). Thể tích của khối lăng trụ đã cho bằng

Ngày 01/08/2022 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:Trắc nghiệm thể tích hình lăng trụ van dung

Đề toán 2022 [Mức độ 2] Cho khối lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\)là tam giác vuông cân tại \(A\), cạnh bên \(AA' = 2a\), góc giữa hai mặt phẳng \(\left( {A'BC} \right)\) và \(\left( {ABC} \right)\) bằng \({30^0}\). Thể tích của khối lăng trụ đã cho bằng A. \(24{a^3}\). B. \(\frac{8}{3}{a^3}\). C. \(8{a^3}\). D. \(\frac{8}{9}{a^3}\). Lời giải Gọi \(M\)là … [Đọc thêm...] về

Đề toán 2022 [Mức độ 2] Cho khối lăng trụ đứng \(ABC.A’B’C’\) có đáy \(ABC\)là tam giác vuông cân tại \(A\), cạnh bên \(AA’ = 2a\), góc giữa hai mặt phẳng \(\left( {A’BC} \right)\) và \(\left( {ABC} \right)\) bằng \({30^0}\). Thể tích của khối lăng trụ đã cho bằng

Đề toán 2022 [Mức độ 3] Cho khối lăng trụ đứng \(ABC.A’B’C’\) có đáy \(ABC\) là tam giác vuông cân tại \(A\), \(AB = 2a\). Góc giữa đường thẳng \(BC’\) và mặt phẳng \(\left( {ACC’A’} \right)\) bằng \({30^0}\). Thể tích của khối lăng trụ đã cho bằng

Ngày 01/08/2022 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:Trắc nghiệm thể tích hình lăng trụ van dung

Đề toán 2022 [Mức độ 3] Cho khối lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông cân tại \(A\), \(AB = 2a\). Góc giữa đường thẳng \(BC'\) và mặt phẳng \(\left( {ACC'A'} \right)\) bằng \({30^0}\). Thể tích của khối lăng trụ đã cho bằng A. \(3{a^3}\). B. \(\)\({a^3}\). C. \(12\sqrt 2 {a^3}\). D. \(4\sqrt 2 {a^3}\). Lời giải Ta có: \(BA \bot AC\) và \(BA … [Đọc thêm...] về

Đề toán 2022 [Mức độ 3] Cho khối lăng trụ đứng \(ABC.A’B’C’\) có đáy \(ABC\) là tam giác vuông cân tại \(A\), \(AB = 2a\). Góc giữa đường thẳng \(BC’\) và mặt phẳng \(\left( {ACC’A’} \right)\) bằng \({30^0}\). Thể tích của khối lăng trụ đã cho bằng

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 6
  • Trang 7
  • Trang 8
  • Trang 9
  • Trang 10
  • Interim pages omitted …
  • Trang 12
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.