• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Trắc nghiệm Thể tích đa diện

(THPT Kinh Môn – Hải Dương – 2022) Người ta dùng thuỷ tinh trong suốt để làm một cái chặn giấy hình tứ diện đều. Để trang trí cho nó, người thiết kế đặt trong khối tứ diện 4 quả cầu nhựa màu xanh có bán kính bằng nhau là \(r = \sqrt 2 (\;{\rm{cm}})\). Biết rằng 4 quả cầu này đôi một tiếp xúc với nhau và mỗi mặt của tứ diện tiếp xúc với 3 quả cầu, đồng thời không cắt quả cầu còn lại. Nếu bỏ qua bề dày của các mặt thì người ta cần dùng bao nhiêu thuỳ tinh để làm chặn giấy trên (làm tròn đến chữ số thập phân thứ 2).

Ngày 19/06/2022 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich da dien VDC, TN THPT 2022

Câu hỏi: (THPT Kinh Môn - Hải Dương - 2022) Người ta dùng thuỷ tinh trong suốt để làm một cái chặn giấy hình tứ diện đều. Để trang trí cho nó, người thiết kế đặt trong khối tứ diện 4 quả cầu nhựa màu xanh có bán kính bằng nhau là \(r = \sqrt 2 (\;{\rm{cm}})\). Biết rằng 4 quả cầu này đôi một tiếp xúc với nhau và mỗi mặt của tứ diện tiếp xúc với 3 quả cầu, đồng thời không … [Đọc thêm...] về

(THPT Kinh Môn – Hải Dương – 2022) Người ta dùng thuỷ tinh trong suốt để làm một cái chặn giấy hình tứ diện đều. Để trang trí cho nó, người thiết kế đặt trong khối tứ diện 4 quả cầu nhựa màu xanh có bán kính bằng nhau là \(r = \sqrt 2 (\;{\rm{cm}})\). Biết rằng 4 quả cầu này đôi một tiếp xúc với nhau và mỗi mặt của tứ diện tiếp xúc với 3 quả cầu, đồng thời không cắt quả cầu còn lại. Nếu bỏ qua bề dày của các mặt thì người ta cần dùng bao nhiêu thuỳ tinh để làm chặn giấy trên (làm tròn đến chữ số thập phân thứ 2).

(THPT Kinh Môn – Hải Dương – 2022) Cho tam giác \(ABC\) đều cạnh \(a\), gọi \(d\) là đường thẳng qua \(A\) và vuông góc với mặt phẳng \(\left( {ABC} \right)\). Trên \(d\) lấy điểm \(S\) và đặt \(AS = x\left( {x > 0} \right)\). Gọi \(H\) và \(K\) lần lượt là trực tâm của các tam giác \(ABC\) và \(SBC\). Biết \(HK\) cắt \(d\) tại điểm \(S’\). Khi \(SS’\) ngắn nhất thì khối chóp \(S.ABC\) có thể tích bằng

Ngày 19/06/2022 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich da dien VDC, TN THPT 2022

Câu hỏi: (THPT Kinh Môn - Hải Dương - 2022) Cho tam giác \(ABC\) đều cạnh \(a\), gọi \(d\) là đường thẳng qua \(A\) và vuông góc với mặt phẳng \(\left( {ABC} \right)\). Trên \(d\) lấy điểm \(S\) và đặt \(AS = x\left( {x > 0} \right)\). Gọi \(H\) và \(K\) lần lượt là trực tâm của các tam giác \(ABC\) và \(SBC\). Biết \(HK\) cắt \(d\) tại điểm \(S'\). Khi \(SS'\) ngắn … [Đọc thêm...] về

(THPT Kinh Môn – Hải Dương – 2022) Cho tam giác \(ABC\) đều cạnh \(a\), gọi \(d\) là đường thẳng qua \(A\) và vuông góc với mặt phẳng \(\left( {ABC} \right)\). Trên \(d\) lấy điểm \(S\) và đặt \(AS = x\left( {x > 0} \right)\). Gọi \(H\) và \(K\) lần lượt là trực tâm của các tam giác \(ABC\) và \(SBC\). Biết \(HK\) cắt \(d\) tại điểm \(S’\). Khi \(SS’\) ngắn nhất thì khối chóp \(S.ABC\) có thể tích bằng

(THPT Lương Tài 2 – Bắc Ninh – 2022) Cho lăng trụ tam giác đều \(ABC.A’B’C’\) có cạnh đáy bằng \(4a\). Góc giữa hai mặt phẳng \(\left( {A’BC} \right)\) và \(\left( {ABC} \right)\) bằng \({30^0}\). Gọi \(M\) là trung điểm của cạnh \(AB\), tính khoảng cách từ điểm \(M\) tới mặt phẳng \(\left( {A’BC} \right)\)?

Ngày 19/06/2022 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich da dien VDC, TN THPT 2022

Câu hỏi: (THPT Lương Tài 2 - Bắc Ninh - 2022) Cho lăng trụ tam giác đều \(ABC.A'B'C'\) có cạnh đáy bằng \(4a\). Góc giữa hai mặt phẳng \(\left( {A'BC} \right)\) và \(\left( {ABC} \right)\) bằng \({30^0}\). Gọi \(M\) là trung điểm của cạnh \(AB\), tính khoảng cách từ điểm \(M\) tới mặt phẳng \(\left( {A'BC} \right)\)? A. \(\frac{{a\sqrt 3 }}{2}\). B. \(3a\). C. … [Đọc thêm...] về

(THPT Lương Tài 2 – Bắc Ninh – 2022) Cho lăng trụ tam giác đều \(ABC.A’B’C’\) có cạnh đáy bằng \(4a\). Góc giữa hai mặt phẳng \(\left( {A’BC} \right)\) và \(\left( {ABC} \right)\) bằng \({30^0}\). Gọi \(M\) là trung điểm của cạnh \(AB\), tính khoảng cách từ điểm \(M\) tới mặt phẳng \(\left( {A’BC} \right)\)?

(THPT Võ Nguyên Giáp – Quảng Bình – 2022) Cho hình lăng trụ đứng \(ABC.A’B’C’\) có đáy \(ABC\)là tam giác đều. Gọi \(\alpha \) là góc tạo bởi \(A’B\) với mặt phẳng \(\left( {ACC’A’} \right)\) và \(\beta \) là góc giữa mặt phẳng \(\left( {A’BC’} \right)\) với mặt phẳng \(\left( {ACC’A’} \right)\). Biết \({\cot ^2}\alpha – {\cot ^2}\beta = \frac{m}{n}\) (với \(m,n \in {{\rm{N}}^*}\) và phân số \(\frac{m}{n}\) tối giản). Khi đó, giá trị của biểu thức \(T = m + 2n\) bằng

Ngày 19/06/2022 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich da dien VDC, TN THPT 2022

Câu hỏi: (THPT Võ Nguyên Giáp - Quảng Bình - 2022) Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\)là tam giác đều. Gọi \(\alpha \) là góc tạo bởi \(A'B\) với mặt phẳng \(\left( {ACC'A'} \right)\) và \(\beta \) là góc giữa mặt phẳng \(\left( {A'BC'} \right)\) với mặt phẳng \(\left( {ACC'A'} \right)\). Biết \({\cot ^2}\alpha - {\cot ^2}\beta = \frac{m}{n}\) (với \(m,n … [Đọc thêm...] về

(THPT Võ Nguyên Giáp – Quảng Bình – 2022) Cho hình lăng trụ đứng \(ABC.A’B’C’\) có đáy \(ABC\)là tam giác đều. Gọi \(\alpha \) là góc tạo bởi \(A’B\) với mặt phẳng \(\left( {ACC’A’} \right)\) và \(\beta \) là góc giữa mặt phẳng \(\left( {A’BC’} \right)\) với mặt phẳng \(\left( {ACC’A’} \right)\). Biết \({\cot ^2}\alpha – {\cot ^2}\beta = \frac{m}{n}\) (với \(m,n \in {{\rm{N}}^*}\) và phân số \(\frac{m}{n}\) tối giản). Khi đó, giá trị của biểu thức \(T = m + 2n\) bằng

(THPT Võ Nguyên Giáp – Quảng Bình – 2022) Cho hình hộp đứng \(ABCD.A’B’C’D’\) có đáy \(ABCD\) là hình vuông. Gọi \(S\) là tâm hình vuông \(A’B’C’D’\). Gọi \(M\)và \(N\) lần lượt là trung điểm của \(SA\)và \(BC\). Biết rằng, nếu \(MN\) tạo với mặt phẳng \(\left( {ABCD} \right)\) một góc \(60^\circ \) và \(AB = a\) thì thể tích \(S.ABC\) bằng

Ngày 19/06/2022 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich da dien VDC, TN THPT 2022

Câu hỏi: (THPT Võ Nguyên Giáp - Quảng Bình - 2022) Cho hình hộp đứng \(ABCD.A'B'C'D'\) có đáy \(ABCD\) là hình vuông. Gọi \(S\) là tâm hình vuông \(A'B'C'D'\). Gọi \(M\)và \(N\) lần lượt là trung điểm của \(SA\)và \(BC\). Biết rằng, nếu \(MN\) tạo với mặt phẳng \(\left( {ABCD} \right)\) một góc \(60^\circ \) và \(AB = a\) thì thể tích \(S.ABC\) bằng A. … [Đọc thêm...] về

(THPT Võ Nguyên Giáp – Quảng Bình – 2022) Cho hình hộp đứng \(ABCD.A’B’C’D’\) có đáy \(ABCD\) là hình vuông. Gọi \(S\) là tâm hình vuông \(A’B’C’D’\). Gọi \(M\)và \(N\) lần lượt là trung điểm của \(SA\)và \(BC\). Biết rằng, nếu \(MN\) tạo với mặt phẳng \(\left( {ABCD} \right)\) một góc \(60^\circ \) và \(AB = a\) thì thể tích \(S.ABC\) bằng

(THPT Yên Lạc – Vĩnh Phúc – 2022) Cho hình chóp \(S.ABCD\), có đáy \(ABCD\) là hình vuông, \(SAB\) là tam giác đều và nằm trong mặt phẳng vuống góc với mặt đáy. Biết khoảng cách giữa hai đường thẳng \(AB\) và \(SD\) bằng \(\frac{{2a\sqrt {21} }}{7}.\) Thế tích của khối chóp \(S.ABCD\) bằng

Ngày 19/06/2022 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich da dien VDC, TN THPT 2022

Câu hỏi: (THPT Yên Lạc - Vĩnh Phúc - 2022) Cho hình chóp \(S.ABCD\), có đáy \(ABCD\) là hình vuông, \(SAB\) là tam giác đều và nằm trong mặt phẳng vuống góc với mặt đáy. Biết khoảng cách giữa hai đường thẳng \(AB\) và \(SD\) bằng \(\frac{{2a\sqrt {21} }}{7}.\) Thế tích của khối chóp \(S.ABCD\) bằng A. \(\frac{{2{a^3}\sqrt 3 }}{3}\). B. \(\frac{{4{a^3}\sqrt 3 … [Đọc thêm...] về

(THPT Yên Lạc – Vĩnh Phúc – 2022) Cho hình chóp \(S.ABCD\), có đáy \(ABCD\) là hình vuông, \(SAB\) là tam giác đều và nằm trong mặt phẳng vuống góc với mặt đáy. Biết khoảng cách giữa hai đường thẳng \(AB\) và \(SD\) bằng \(\frac{{2a\sqrt {21} }}{7}.\) Thế tích của khối chóp \(S.ABCD\) bằng

(THPT Yên Lạc – Vĩnh Phúc – 2022) Một trang tại cần xây dựng một bể chứa nước hình hộp chữ nhật bằng gạch không nắp ở phía trên. Biết bể có chiều dài gấp hai lần chiều rộng và thể tích (phần chứa nước) bằng \(8\,{{\rm{m}}^{\rm{3}}}\). Hỏi chiều cao của bể gần nhất với kết quả nào dưới đây để số lượng gạch dùng để xây bể là nhỏ nhất

Ngày 19/06/2022 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich da dien VDC, TN THPT 2022

Câu hỏi: (THPT Yên Lạc - Vĩnh Phúc - 2022) Một trang tại cần xây dựng một bể chứa nước hình hộp chữ nhật bằng gạch không nắp ở phía trên. Biết bể có chiều dài gấp hai lần chiều rộng và thể tích (phần chứa nước) bằng \(8\,{{\rm{m}}^{\rm{3}}}\). Hỏi chiều cao của bể gần nhất với kết quả nào dưới đây để số lượng gạch dùng để xây bể là nhỏ nhất A. \(1,8\,{\mathop{\rm … [Đọc thêm...] về

(THPT Yên Lạc – Vĩnh Phúc – 2022) Một trang tại cần xây dựng một bể chứa nước hình hộp chữ nhật bằng gạch không nắp ở phía trên. Biết bể có chiều dài gấp hai lần chiều rộng và thể tích (phần chứa nước) bằng \(8\,{{\rm{m}}^{\rm{3}}}\). Hỏi chiều cao của bể gần nhất với kết quả nào dưới đây để số lượng gạch dùng để xây bể là nhỏ nhất

(THPT Yên Phong 1 – Bắc Ninh – 2022) Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(M\) là điểm di động trên cạnh \(AB\) và \(N\) là trung điểm \(SD\). Mặt phẳng \(\left( \alpha \right)\) đi qua \(M,\,N\) và song song \(BC\) chia khối chóp thành hai khối có tỉ lệ thể tích \(\frac{{{V_1}}}{{{V_2}}} = \frac{3}{5}\), trong đó \({V_1}\) là thể tích khối đa diện chứa đỉnh \(A\), \({V_2}\) là thể tích khối đa diện chứa đỉnh \(B\). Tỉ số \(\frac{{AM}}{{AB}}\) bằng

Ngày 19/06/2022 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich da dien VDC, TN THPT 2022

Câu hỏi: (THPT Yên Phong 1 - Bắc Ninh - 2022) Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(M\) là điểm di động trên cạnh \(AB\) và \(N\) là trung điểm \(SD\). Mặt phẳng \(\left( \alpha \right)\) đi qua \(M,\,N\) và song song \(BC\) chia khối chóp thành hai khối có tỉ lệ thể tích \(\frac{{{V_1}}}{{{V_2}}} = \frac{3}{5}\), trong đó \({V_1}\) là thể tích … [Đọc thêm...] về

(THPT Yên Phong 1 – Bắc Ninh – 2022) Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(M\) là điểm di động trên cạnh \(AB\) và \(N\) là trung điểm \(SD\). Mặt phẳng \(\left( \alpha \right)\) đi qua \(M,\,N\) và song song \(BC\) chia khối chóp thành hai khối có tỉ lệ thể tích \(\frac{{{V_1}}}{{{V_2}}} = \frac{3}{5}\), trong đó \({V_1}\) là thể tích khối đa diện chứa đỉnh \(A\), \({V_2}\) là thể tích khối đa diện chứa đỉnh \(B\). Tỉ số \(\frac{{AM}}{{AB}}\) bằng

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 10
  • Trang 11
  • Trang 12

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.