• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Trắc nghiệm Thể tích đa diện

(THPT Lê Thánh Tông – HCM-2022) Hình lập phương \(ABCD.{A_1}{B_1}{C_1}{D_1}\) có cạnh bằng 6. Gọi \(M,\,\,N\) lần lượt là trung điểm của cạnh \({B_1}{C_1},\,\,CD\) và \(O,\,\,{O_1}\) lần lượt là tâm các hình vuông \(ABCD,\,\,{A_1}{B_1}{C_1}{D_1}\). Thể tích khối tứ diện \(MNO{O_1}\) bằng

Ngày 19/06/2022 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich da dien VDC, TN THPT 2022

Câu hỏi: (THPT Lê Thánh Tông - HCM-2022) Hình lập phương \(ABCD.{A_1}{B_1}{C_1}{D_1}\) có cạnh bằng 6. Gọi \(M,\,\,N\) lần lượt là trung điểm của cạnh \({B_1}{C_1},\,\,CD\) và \(O,\,\,{O_1}\) lần lượt là tâm các hình vuông \(ABCD,\,\,{A_1}{B_1}{C_1}{D_1}\). Thể tích khối tứ diện \(MNO{O_1}\) bằng A. 9. B. 12. C. 18. D. 27. Lời giải: Chọn A Ta có: … [Đọc thêm...] về

(THPT Lê Thánh Tông – HCM-2022) Hình lập phương \(ABCD.{A_1}{B_1}{C_1}{D_1}\) có cạnh bằng 6. Gọi \(M,\,\,N\) lần lượt là trung điểm của cạnh \({B_1}{C_1},\,\,CD\) và \(O,\,\,{O_1}\) lần lượt là tâm các hình vuông \(ABCD,\,\,{A_1}{B_1}{C_1}{D_1}\). Thể tích khối tứ diện \(MNO{O_1}\) bằng

(Sở Bạc Liêu 2022) Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông, \(AB = 1\), cạnh bên \(SA = 1\) và vuông góc với mặt đáy \(\left( {ABCD} \right)\). Kí hiệu \(M\) là điểm di động trên đoạn \(CD\) và \(N\) là điểm di động trên đoạn \(CB\) và góc \(\widehat {MAN} = 45^\circ \). Thể tích nhỏ nhất của khối chóp \(S.AMN\) là

Ngày 19/06/2022 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich da dien VDC, TN THPT 2022

Câu hỏi: (Sở Bạc Liêu 2022) Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông, \(AB = 1\), cạnh bên \(SA = 1\) và vuông góc với mặt đáy \(\left( {ABCD} \right)\). Kí hiệu \(M\) là điểm di động trên đoạn \(CD\) và \(N\) là điểm di động trên đoạn \(CB\) và góc \(\widehat {MAN} = 45^\circ \). Thể tích nhỏ nhất của khối chóp \(S.AMN\) là A. \(\frac{{\sqrt 2 - … [Đọc thêm...] về

(Sở Bạc Liêu 2022) Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông, \(AB = 1\), cạnh bên \(SA = 1\) và vuông góc với mặt đáy \(\left( {ABCD} \right)\). Kí hiệu \(M\) là điểm di động trên đoạn \(CD\) và \(N\) là điểm di động trên đoạn \(CB\) và góc \(\widehat {MAN} = 45^\circ \). Thể tích nhỏ nhất của khối chóp \(S.AMN\) là

(Cụm Trường Nghệ An – 2022) Cho lăng trụ \(ABC.A’B’C’\) có thể tích bằng 2. Gọi \(M,N\) lần lượt là hai điểm nằm trên hai cạnh \(AA’\) và \(BB’\) sao cho \(M\) là trung điểm \(AA’\) và \(B’N = \frac{2}{3}BB’\). Đường thẳng \(CM\) cắt đường thẳng \(A’C’\) tại \(P\) và đường thẳng \(CN\) cắt đường thẳng \(B’C’\) tại \(Q\). Biết thể tích khối đa diện lồi \(A’MPB’NQ\) bằng \(\frac{a}{b}\) với \(a,b \in \mathbb{N};{\rm{ }}a,b\) nguyên tố cùng nhau. Tính \(a + 2b\).

Ngày 19/06/2022 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich da dien VDC, TN THPT 2022

Câu hỏi: (Cụm Trường Nghệ An - 2022) Cho lăng trụ \(ABC.A'B'C'\) có thể tích bằng 2. Gọi \(M,N\) lần lượt là hai điểm nằm trên hai cạnh \(AA'\) và \(BB'\) sao cho \(M\) là trung điểm \(AA'\) và \(B'N = \frac{2}{3}BB'\). Đường thẳng \(CM\) cắt đường thẳng \(A'C'\) tại \(P\) và đường thẳng \(CN\) cắt đường thẳng \(B'C'\) tại \(Q\). Biết thể tích khối đa diện lồi \(A'MPB'NQ\) … [Đọc thêm...] về

(Cụm Trường Nghệ An – 2022) Cho lăng trụ \(ABC.A’B’C’\) có thể tích bằng 2. Gọi \(M,N\) lần lượt là hai điểm nằm trên hai cạnh \(AA’\) và \(BB’\) sao cho \(M\) là trung điểm \(AA’\) và \(B’N = \frac{2}{3}BB’\). Đường thẳng \(CM\) cắt đường thẳng \(A’C’\) tại \(P\) và đường thẳng \(CN\) cắt đường thẳng \(B’C’\) tại \(Q\). Biết thể tích khối đa diện lồi \(A’MPB’NQ\) bằng \(\frac{a}{b}\) với \(a,b \in \mathbb{N};{\rm{ }}a,b\) nguyên tố cùng nhau. Tính \(a + 2b\).

(Cụm Trường Nghệ An – 2022) Cho tứ diện \(ABCD\) có \(AC = 2CD = DB = 2a.\) Gọi \(H\)và \(K\) lần lượt là hình chiếu vuông góc

của \(A\)và \(B\) lên đường thẳng \(CD\) sao cho \(H,C,D,K\) theo thứ tự cách đều nhau. Biết góc tạo bởi \(AH\) và \(BK\) bằng \(60^\circ \). Thể tích khối tứ diện \(ABCD\)bằng

Ngày 19/06/2022 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich da dien VDC, TN THPT 2022

Câu hỏi: (Cụm Trường Nghệ An - 2022) Cho tứ diện \(ABCD\) có \(AC = 2CD = DB = 2a.\) Gọi \(H\)và \(K\) lần lượt là hình chiếu vuông góc của \(A\)và \(B\) lên đường thẳng \(CD\) sao cho \(H,C,D,K\) theo thứ tự cách đều nhau. Biết góc tạo bởi \(AH\) và \(BK\) bằng \(60^\circ \). Thể tích khối tứ diện \(ABCD\)bằng A. \(\frac{{{a^3}\sqrt 3 }}{6}\). B. … [Đọc thêm...] về

(Cụm Trường Nghệ An – 2022) Cho tứ diện \(ABCD\) có \(AC = 2CD = DB = 2a.\) Gọi \(H\)và \(K\) lần lượt là hình chiếu vuông góc

của \(A\)và \(B\) lên đường thẳng \(CD\) sao cho \(H,C,D,K\) theo thứ tự cách đều nhau. Biết góc tạo bởi \(AH\) và \(BK\) bằng \(60^\circ \). Thể tích khối tứ diện \(ABCD\)bằng

(Sở Thanh Hóa 2022) Cho khối chóp \(S.ABCD\) với đáy \(ABCD\) là hình bình hành có thể tích bằng \(84{a^3}\). Gọi \(M\) là trung điểm \(AB;J\) thuộc cạnh \(SC\) sao cho \(JC = 2JS;H\) thuộc cạnh \(SD\) sao cho \(HD = 6HS\). Mặt phẳng \((MHJ)\) chia khối chóp thành hai phần. Thể tích khối đạ diện của phần chứa đỉnh \(S\) bằng

Ngày 19/06/2022 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich da dien VDC, TN THPT 2022

Câu hỏi: (Sở Thanh Hóa 2022) Cho khối chóp \(S.ABCD\) với đáy \(ABCD\) là hình bình hành có thể tích bằng \(84{a^3}\). Gọi \(M\) là trung điểm \(AB;J\) thuộc cạnh \(SC\) sao cho \(JC = 2JS;H\) thuộc cạnh \(SD\) sao cho \(HD = 6HS\). Mặt phẳng \((MHJ)\) chia khối chóp thành hai phần. Thể tích khối đạ diện của phần chứa đỉnh \(S\) bằng A. \(17{a^3}\). B. … [Đọc thêm...] về

(Sở Thanh Hóa 2022) Cho khối chóp \(S.ABCD\) với đáy \(ABCD\) là hình bình hành có thể tích bằng \(84{a^3}\). Gọi \(M\) là trung điểm \(AB;J\) thuộc cạnh \(SC\) sao cho \(JC = 2JS;H\) thuộc cạnh \(SD\) sao cho \(HD = 6HS\). Mặt phẳng \((MHJ)\) chia khối chóp thành hai phần. Thể tích khối đạ diện của phần chứa đỉnh \(S\) bằng

(Cụm Trường Nghệ An – 2022) Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(AB = a,\,\,AD = a\sqrt 3 \). Mặt bên \(SAB\) là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy. Cosin của góc giữa đường thẳng \(SD\) và mặt phẳng \(\left( {SBC} \right)\) bằng:

Ngày 19/06/2022 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich da dien VDC, TN THPT 2022

Câu hỏi: (Cụm Trường Nghệ An - 2022) Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(AB = a,\,\,AD = a\sqrt 3 \). Mặt bên \(SAB\) là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy. Cosin của góc giữa đường thẳng \(SD\) và mặt phẳng \(\left( {SBC} \right)\) bằng: A. \(\frac{{2\sqrt 5 }}{5}\). B. \(\frac{{\sqrt {13} }}{4}\). C. … [Đọc thêm...] về

(Cụm Trường Nghệ An – 2022) Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(AB = a,\,\,AD = a\sqrt 3 \). Mặt bên \(SAB\) là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy. Cosin của góc giữa đường thẳng \(SD\) và mặt phẳng \(\left( {SBC} \right)\) bằng:

(THPT Hương Sơn – Hà Tĩnh – 2022) Cho tứ diện đều \(ABCD\) có tất cả các cạnh bằng 1. Gọi \(M\) là điểm thuộc cạnh \(BC\) sao cho\(MC = 2MB\); \(N,\,P\) lần lượt là trung điểm của \(BD\) và \(AD\). Gọi \(Q\) là giao điểm của \(AC\) và \(\left( {MNP} \right)\). Thể tích khối đa diện \(ABMNPQ\) bằng

Ngày 19/06/2022 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich da dien VDC, TN THPT 2022

Câu hỏi: (THPT Hương Sơn - Hà Tĩnh - 2022) Cho tứ diện đều \(ABCD\) có tất cả các cạnh bằng 1. Gọi \(M\) là điểm thuộc cạnh \(BC\) sao cho\(MC = 2MB\); \(N,\,P\) lần lượt là trung điểm của \(BD\) và \(AD\). Gọi \(Q\) là giao điểm của \(AC\) và \(\left( {MNP} \right)\). Thể tích khối đa diện \(ABMNPQ\) bằng A. \(\frac{{7\sqrt 2 }}{{216}}\). B. \(\frac{{13\sqrt 2 … [Đọc thêm...] về

(THPT Hương Sơn – Hà Tĩnh – 2022) Cho tứ diện đều \(ABCD\) có tất cả các cạnh bằng 1. Gọi \(M\) là điểm thuộc cạnh \(BC\) sao cho\(MC = 2MB\); \(N,\,P\) lần lượt là trung điểm của \(BD\) và \(AD\). Gọi \(Q\) là giao điểm của \(AC\) và \(\left( {MNP} \right)\). Thể tích khối đa diện \(ABMNPQ\) bằng

(THPT Lê Thánh Tông – HCM-2022) Cho lăng trụ \(ABC.A’B’C’\) có tam giác \(ABC\) vuông cân tại \(A\). Hình chiếu vuông góc của \(A’\) lên mặt đáy trùng với trung điểm của cạnh \(BC\). Biết cạnh \(AA’ = a\sqrt 3 \) và tạo với mặt đáy của hình lăng trụ một góc bằng \(60^\circ \). Khoảng cách từ đỉnh \(C’\) đến mặt \(\left( {A’BC} \right)\) bằng

Ngày 19/06/2022 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich da dien VDC, TN THPT 2022

Câu hỏi: (THPT Lê Thánh Tông - HCM-2022) Cho lăng trụ \(ABC.A'B'C'\) có tam giác \(ABC\) vuông cân tại \(A\). Hình chiếu vuông góc của \(A'\) lên mặt đáy trùng với trung điểm của cạnh \(BC\). Biết cạnh \(AA' = a\sqrt 3 \) và tạo với mặt đáy của hình lăng trụ một góc bằng \(60^\circ \). Khoảng cách từ đỉnh \(C'\) đến mặt \(\left( {A'BC} \right)\) bằng A. … [Đọc thêm...] về

(THPT Lê Thánh Tông – HCM-2022) Cho lăng trụ \(ABC.A’B’C’\) có tam giác \(ABC\) vuông cân tại \(A\). Hình chiếu vuông góc của \(A’\) lên mặt đáy trùng với trung điểm của cạnh \(BC\). Biết cạnh \(AA’ = a\sqrt 3 \) và tạo với mặt đáy của hình lăng trụ một góc bằng \(60^\circ \). Khoảng cách từ đỉnh \(C’\) đến mặt \(\left( {A’BC} \right)\) bằng

(THPT Nguyễn Tất Thành-Đh-SP-HN) Cho hình lăng trụ đứng \(ABC.A’B’C’\) có đáy \(ABC\) là tam giác vuông tại \(A\), \(AB = a\), \(AC = 2a\)và \(AA’ = a\) (tham khảo hình vẽ bên). Tính khoảng cách \(d\) giữa hai đường thẳng \(AB’,\)\(A’C\).

Ngày 19/06/2022 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich da dien VDC, TN THPT 2022

Câu hỏi: (THPT Nguyễn Tất Thành-Đh-SP-HN) Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \(A\), \(AB = a\), \(AC = 2a\)và \(AA' = a\) (tham khảo hình vẽ bên). Tính khoảng cách \(d\) giữa hai đường thẳng \(AB',\)\(A'C\). A. \(d = \frac{{2a}}{3}\). B. \(d = \frac{{\sqrt 3 a}}{2}\). C. \(d = \frac{{\sqrt 2 a}}{3}\). D. \(d = … [Đọc thêm...] về

(THPT Nguyễn Tất Thành-Đh-SP-HN) Cho hình lăng trụ đứng \(ABC.A’B’C’\) có đáy \(ABC\) là tam giác vuông tại \(A\), \(AB = a\), \(AC = 2a\)và \(AA’ = a\) (tham khảo hình vẽ bên). Tính khoảng cách \(d\) giữa hai đường thẳng \(AB’,\)\(A’C\).

(THPT Nguyễn Tất Thành-Đh-SP-HN) Cho hình lập phương \(ABCD.A’B’C’D’\) có cạnh \(a\). Gọi \(M,N\) và \(E\) lần lượt là trung điểm các cạnh \(AA’,C’D’\) và \(CC’\)(tham khảo hình vẽ bên). Tính thể tích \(V\)của khối tứ diện \(BMNE\).

Ngày 19/06/2022 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich da dien VDC, TN THPT 2022

Câu hỏi: (THPT Nguyễn Tất Thành-Đh-SP-HN) Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh \(a\). Gọi \(M,N\) và \(E\) lần lượt là trung điểm các cạnh \(AA',C'D'\) và \(CC'\)(tham khảo hình vẽ bên). Tính thể tích \(V\)của khối tứ diện \(BMNE\). A. \(V = \frac{{{a^3}}}{{24}}\). B. \(V = \frac{{{a^3}}}{6}\). C. \(V = \frac{{{a^3}}}{8}\). D. \(V = … [Đọc thêm...] về

(THPT Nguyễn Tất Thành-Đh-SP-HN) Cho hình lập phương \(ABCD.A’B’C’D’\) có cạnh \(a\). Gọi \(M,N\) và \(E\) lần lượt là trung điểm các cạnh \(AA’,C’D’\) và \(CC’\)(tham khảo hình vẽ bên). Tính thể tích \(V\)của khối tứ diện \(BMNE\).

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 8
  • Trang 9
  • Trang 10
  • Trang 11
  • Trang 12
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.