Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác vuông, \(BA = BC = 2a\), góc giữa đường thẳng \(B'C\) và mặt phẳng \(\left( {ABC} \right)\) bằng \({30^{\rm{o}}}\). Tính khoảng cách giữa hai đường thẳng \(A'B\) và \(B'C\). A. \(\frac{{a\sqrt {15} }}{3}\). B. \(\frac{{a\sqrt {15} }}{5}\). C. \(\frac{{a\sqrt 5 }}{5}\). D. \(\frac{{2a\sqrt 5 }}{5}\). Lời … [Đọc thêm...] vềCho hình lăng trụ đứng \(ABC.A’B’C’\) có đáy là tam giác vuông, \(BA = BC = 2a\), góc giữa đường thẳng \(B’C\) và mặt phẳng \(\left( {ABC} \right)\) bằng \({30^{\rm{o}}}\). Tính khoảng cách giữa hai đường thẳng \(A’B\) và \(B’C\).
Trắc nghiệm Thể tích đa diện
Cho hình chóp \(SABC\) có \(SC = 2a\) và \(SC \bot (ABC).\) Đáy \(ABC\) là tam giác vuông cân tại \(B\) và \(AB = a\sqrt 2 .\) Mặt phẳng \((\alpha )\) qua \(C\) và vuông góc với \(SA,\) \((\alpha )\) cắt \(SA,SB\) lần lượt tại \(D,E.\) Tính thể tích khối chóp \(SCDE.\)
Cho hình chóp \(SABC\) có \(SC = 2a\) và \(SC \bot (ABC).\) Đáy \(ABC\) là tam giác vuông cân tại \(B\) và \(AB = a\sqrt 2 .\) Mặt phẳng \((\alpha )\) qua \(C\) và vuông góc với \(SA,\) \((\alpha )\) cắt \(SA,SB\) lần lượt tại \(D,E.\) Tính thể tích khối chóp \(SCDE.\) A. \(\frac{{{a^3}}}{9}\). B. \(\frac{{2{a^3}}}{3}\). C. \(\frac{{2{a^3}}}{9}\). D. … [Đọc thêm...] vềCho hình chóp \(SABC\) có \(SC = 2a\) và \(SC \bot (ABC).\) Đáy \(ABC\) là tam giác vuông cân tại \(B\) và \(AB = a\sqrt 2 .\) Mặt phẳng \((\alpha )\) qua \(C\) và vuông góc với \(SA,\) \((\alpha )\) cắt \(SA,SB\) lần lượt tại \(D,E.\) Tính thể tích khối chóp \(SCDE.\)
Cho khối lăng trụ \(ABC.A’B’C’\) có thể tích bằng \(a\). Gọi \(M\) là trung điểm của \(AB\). Nếu tam giác \(MB’C’\) có diện tích bằng \(b\) thì khoảng cách từ \(C\) đến mặt phẳng \(\left( {MB’C’} \right)\) bằng
Cho khối lăng trụ \(ABC.A'B'C'\) có thể tích bằng \(a\). Gọi \(M\) là trung điểm của \(AB\). Nếu tam giác \(MB'C'\) có diện tích bằng \(b\) thì khoảng cách từ \(C\) đến mặt phẳng \(\left( {MB'C'} \right)\) bằng A. \(\frac{a}{b}\). B. \(\frac{b}{{2a}}\). C. \(\frac{a}{{2b}}\). D. \(\frac{a}{{6b}}\). Lời giải: . Ta có \(BC\,{\rm{// }}B'C' \Rightarrow … [Đọc thêm...] vềCho khối lăng trụ \(ABC.A’B’C’\) có thể tích bằng \(a\). Gọi \(M\) là trung điểm của \(AB\). Nếu tam giác \(MB’C’\) có diện tích bằng \(b\) thì khoảng cách từ \(C\) đến mặt phẳng \(\left( {MB’C’} \right)\) bằng
Cho lăng trụ \(ABC.A’B’C’.\) Trên các cạnh \(AA’,BB’\) lần lượt lấy các điểm \(E,F\) sao cho \(AA’ = kA’E,\,BB’ = kB’F.\) Mặt phẳng \(\left( {C’EF} \right)\) chia khối lăng trụ đã cho thành hai khối đa diện bao gồm khối chóp \(C’.A’B’FE\) có thể tích \({V_1}\) và khối đa diện \(ABCEFC’\) có thể tích \({V_2}\). Biết rằng \(\frac{{{V_1}}}{{{V_2}}} = \frac{2}{7},\) tìm \(k.\)
Cho lăng trụ \(ABC.A'B'C'.\) Trên các cạnh \(AA',BB'\) lần lượt lấy các điểm \(E,F\) sao cho \(AA' = kA'E,\,BB' = kB'F.\) Mặt phẳng \(\left( {C'EF} \right)\) chia khối lăng trụ đã cho thành hai khối đa diện bao gồm khối chóp \(C'.A'B'FE\) có thể tích \({V_1}\) và khối đa diện \(ABCEFC'\) có thể tích \({V_2}\). Biết rằng \(\frac{{{V_1}}}{{{V_2}}} = \frac{2}{7},\) tìm \(k.\) … [Đọc thêm...] vềCho lăng trụ \(ABC.A’B’C’.\) Trên các cạnh \(AA’,BB’\) lần lượt lấy các điểm \(E,F\) sao cho \(AA’ = kA’E,\,BB’ = kB’F.\) Mặt phẳng \(\left( {C’EF} \right)\) chia khối lăng trụ đã cho thành hai khối đa diện bao gồm khối chóp \(C’.A’B’FE\) có thể tích \({V_1}\) và khối đa diện \(ABCEFC’\) có thể tích \({V_2}\). Biết rằng \(\frac{{{V_1}}}{{{V_2}}} = \frac{2}{7},\) tìm \(k.\)
Cho hình chóp \(S.ABC\) có \(SA = a,\,BC = a\sqrt 2 \), thể tích bằng \(\frac{{{a^3}\sqrt {11} }}{6}\). Tính khoảng cách từ \(S\) đến \(\left( {ABC} \right)\).
Cho hình chóp \(S.ABC\) có \(SA = a,\,BC = a\sqrt 2 \), thể tích bằng \(\frac{{{a^3}\sqrt {11} }}{6}\). Tính khoảng cách từ \(S\) đến \(\left( {ABC} \right)\). A. \(\frac{{2a\sqrt {11} }}{{\sqrt {23} }}\). B. \(\frac{{2a\sqrt {11} }}{{\sqrt {46} }}\). C. \(\frac{{\sqrt 3 a}}{2}\). D. \(\frac{{a\sqrt {21} }}{{\sqrt {46} }}\). Lời giải: Gọi \(M,\,N\) lần lượt … [Đọc thêm...] vềCho hình chóp \(S.ABC\) có \(SA = a,\,BC = a\sqrt 2 \), thể tích bằng \(\frac{{{a^3}\sqrt {11} }}{6}\). Tính khoảng cách từ \(S\) đến \(\left( {ABC} \right)\).
Cho hình lăng trụ\(ABC.A’B’C’\). Gọi \(M\), \(N\), \(P\) lần lượt là các điểm thuộc các cạnh \(AA’\), \(BB’\), \(CC’\) sao cho \(AM = 2MA’\), \(NB’ = 2NB\), \(PC = PC’\). Gọi \({V_1}\), \({V_2}\) lần lượt là thể tích của hai khối đa diện \(ABCMNP\) và \(A’B’C’MNP\). Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}\).
Cho hình lăng trụ\(ABC.A'B'C'\). Gọi \(M\), \(N\), \(P\) lần lượt là các điểm thuộc các cạnh \(AA'\), \(BB'\), \(CC'\) sao cho \(AM = 2MA'\), \(NB' = 2NB\), \(PC = PC'\). Gọi \({V_1}\), \({V_2}\) lần lượt là thể tích của hai khối đa diện \(ABCMNP\) và \(A'B'C'MNP\). Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}\). A. \(\frac{{{V_1}}}{{{V_2}}} = 2\). B. \(\frac{{{V_1}}}{{{V_2}}} = … [Đọc thêm...] vềCho hình lăng trụ\(ABC.A’B’C’\). Gọi \(M\), \(N\), \(P\) lần lượt là các điểm thuộc các cạnh \(AA’\), \(BB’\), \(CC’\) sao cho \(AM = 2MA’\), \(NB’ = 2NB\), \(PC = PC’\). Gọi \({V_1}\), \({V_2}\) lần lượt là thể tích của hai khối đa diện \(ABCMNP\) và \(A’B’C’MNP\). Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}\).
Cho chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right)\), vuông cân tại A, \(BC = a\sqrt 2 \). Biết khoảng cách từ điểm A đến mặt phẳng (SBC) bằng \(\frac{{a\sqrt 3 }}{3}\). Tính thể tích khối chóp \(S.ABC\)
Cho chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right)\), vuông cân tại A, \(BC = a\sqrt 2 \). Biết khoảng cách từ điểm A đến mặt phẳng (SBC) bằng \(\frac{{a\sqrt 3 }}{3}\). Tính thể tích khối chóp \(S.ABC\) A. \(\frac{{{a^3}}}{2}\). B. \(\frac{{{a^3}}}{6}\). C. \(\frac{{3{a^3}\sqrt 2 }}{{16}}\). D. \(\frac{{3{a^3}\sqrt 2 }}{{48}}\). Lời giải: Kẻ \(AM \bot … [Đọc thêm...] vềCho chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right)\), vuông cân tại A, \(BC = a\sqrt 2 \). Biết khoảng cách từ điểm A đến mặt phẳng (SBC) bằng \(\frac{{a\sqrt 3 }}{3}\). Tính thể tích khối chóp \(S.ABC\)
Cho hình hộp \(ABCD.A’B’C’D’\) có thể tích \(V\). Gọi \(G\) là trọng tâm tam giác \(AC’D\), \(E\) là trung điểm \(A’D’\). Tính thể tích khối chóp \(AEGC’\) theo \(V\).
Cho hình hộp \(ABCD.A'B'C'D'\) có thể tích \(V\). Gọi \(G\) là trọng tâm tam giác \(AC'D\), \(E\) là trung điểm \(A'D'\). Tính thể tích khối chóp \(AEGC'\) theo \(V\). A. \(\frac{V}{{12}}.\). B. \(\frac{V}{9}.\). C. \(\frac{V}{{16}}.\). D. \(\frac{V}{{18}}.\) Lời giải: Gọi \(I\) là trung điểm \(AD\). \({V_{A.EC'G}} = {V_{D.EC'G}} = … [Đọc thêm...] vềCho hình hộp \(ABCD.A’B’C’D’\) có thể tích \(V\). Gọi \(G\) là trọng tâm tam giác \(AC’D\), \(E\) là trung điểm \(A’D’\). Tính thể tích khối chóp \(AEGC’\) theo \(V\).
Cho chóp \(S.ABCD\) có \(SA \bot \left( {ABCD} \right)\), ABCD là hình vuông cạnh a. Khoảng cách từ A đến (SBC) bằng \(\frac{{a\sqrt 3 }}{2}\). Tính thể tích chóp \(S.ABCD\)
Cho chóp \(S.ABCD\) có \(SA \bot \left( {ABCD} \right)\), ABCD là hình vuông cạnh a. Khoảng cách từ A đến (SBC) bằng \(\frac{{a\sqrt 3 }}{2}\). Tính thể tích chóp \(S.ABCD\) A. \({a^3}\sqrt 3 \). B. \(\frac{{{a^3}\sqrt 3 }}{3}\). C. \(\frac{{{a^3}\sqrt 3 }}{6}\). D. \(\frac{{{a^3}\sqrt {21} }}{{21}}\) Lời giải: Kẻ \(AH \bot SB\). + Ta có \(\left. … [Đọc thêm...] vềCho chóp \(S.ABCD\) có \(SA \bot \left( {ABCD} \right)\), ABCD là hình vuông cạnh a. Khoảng cách từ A đến (SBC) bằng \(\frac{{a\sqrt 3 }}{2}\). Tính thể tích chóp \(S.ABCD\)
Cho khối lập phương \(ABCD.{A_1}{B_1}{C_1}{D_1}\) có cạnh là \(1.\) Thể tích V của khối chóp \(DAB{C_1}{D_1}\) bằng


Cho khối lập phương \(ABCD.{A_1}{B_1}{C_1}{D_1}\) có cạnh là \(1.\) Thể tích V của khối chóp \(DAB{C_1}{D_1}\) bằng A. \(\frac{1}{4}\). B. \(\frac{{\sqrt 2 }}{6}\). C. \(\frac{{\sqrt 2 }}{3}\). D. \(\frac{1}{3}\) Lời giải: \({V_{D.AB{C_1}{D_1}}} = {V_{AD{D_1}.CB{C_1}}} - {V_{{C_1}.BCD}} = \frac{1}{2}V - \frac{1}{6}V = \frac{1}{3}V = … [Đọc thêm...] vềCho khối lập phương \(ABCD.{A_1}{B_1}{C_1}{D_1}\) có cạnh là \(1.\) Thể tích V của khối chóp \(DAB{C_1}{D_1}\) bằng
