Cho khối chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(B\), \(AB = 2a,\,AC = a\sqrt 5 ,\,SA \bot \left( {ABC} \right)\) và \(SA = a\). Thể tích của khối chóp đã cho bằng A. \(\frac{{{a^3}\sqrt 5 }}{3}\). B. \(\frac{{{a^3}\sqrt 5 }}{6}\). C. \(\frac{{{a^3}}}{3}\). D. \(\frac{{{a^3}}}{6}\). Lời giải: Ta có \(B{C^2} = A{C^2} - A{B^2} = {a^2} … [Đọc thêm...] vềCho khối chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(B\), \(AB = 2a,\,AC = a\sqrt 5 ,\,SA \bot \left( {ABC} \right)\) và \(SA = a\). Thể tích của khối chóp đã cho bằng
Trắc nghiệm Thể tích đa diện
Cho hình chóp \(S.ABC\) có \(\Delta ABC\) đều; mặt bên \(SAB\) nằm trong mặt phẳng vuông góc với mặt đáy và \(\Delta SAB\) vuông tại \(S\), \(SA = a\sqrt 3 \), \(SB = a\). Tính thể tích khối chóp \(S.ABC\).
Cho hình chóp \(S.ABC\) có \(\Delta ABC\) đều; mặt bên \(SAB\) nằm trong mặt phẳng vuông góc với mặt đáy và \(\Delta SAB\) vuông tại \(S\), \(SA = a\sqrt 3 \), \(SB = a\). Tính thể tích khối chóp \(S.ABC\). A. \(\frac{{{a^3}}}{4}\). B. \(\frac{{{a^3}}}{3}\). C. \(\frac{{{a^3}}}{6}\). D. \(\frac{{{a^3}}}{2}\). Lời giải: Kẻ \(SH\) vuông góc với \(AB\) tại … [Đọc thêm...] vềCho hình chóp \(S.ABC\) có \(\Delta ABC\) đều; mặt bên \(SAB\) nằm trong mặt phẳng vuông góc với mặt đáy và \(\Delta SAB\) vuông tại \(S\), \(SA = a\sqrt 3 \), \(SB = a\). Tính thể tích khối chóp \(S.ABC\).
Cho khối lăng trụ đứng \(ABC.A’B’C’\) có \(BB’ = a\), đáy \(ABC\) là tam giác vuông cân tại \(B\) và \(AC = a\sqrt 2 \). Tính thể tích của khối lăng trụ đã cho.
Cho khối lăng trụ đứng \(ABC.A'B'C'\) có \(BB' = a\), đáy \(ABC\) là tam giác vuông cân tại \(B\) và \(AC = a\sqrt 2 \). Tính thể tích của khối lăng trụ đã cho. A. \(V = \frac{{{a^3}}}{6}\). B. \(V = \frac{{{a^3}}}{3}\). C. \(V = \frac{{{a^3}}}{2}\). D. \(V = {a^3}\). Lời giải: Tam giác \(ABC\) vuông cân tại \(B\)\( \Rightarrow AB = BC = \frac{{AC}}{{\sqrt … [Đọc thêm...] vềCho khối lăng trụ đứng \(ABC.A’B’C’\) có \(BB’ = a\), đáy \(ABC\) là tam giác vuông cân tại \(B\) và \(AC = a\sqrt 2 \). Tính thể tích của khối lăng trụ đã cho.
Cho khối lăng trụ đứng \(ABC.A’B’C’\) có đáy \(ABC\) là tam giác cân với \(AB = AC = a\), \(\widehat {BAC} = 120^\circ \). Mặt phẳng \((AB’C’)\) tạo với đáy một góc \(60^\circ \) Tính thể tích \(V\) của khối lăng trụ đã cho.
Cho khối lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác cân với \(AB = AC = a\), \(\widehat {BAC} = 120^\circ \). Mặt phẳng \((AB'C')\) tạo với đáy một góc \(60^\circ \) Tính thể tích \(V\) của khối lăng trụ đã cho. A. \(V = \frac{{3{a^3}}}{8}\). B. \(V = \frac{{9{a^3}}}{8}\). C. \(V = \frac{{{a^3}}}{8}\). D. \(V = \frac{{3{a^3}}}{4}\). Lời … [Đọc thêm...] vềCho khối lăng trụ đứng \(ABC.A’B’C’\) có đáy \(ABC\) là tam giác cân với \(AB = AC = a\), \(\widehat {BAC} = 120^\circ \). Mặt phẳng \((AB’C’)\) tạo với đáy một góc \(60^\circ \) Tính thể tích \(V\) của khối lăng trụ đã cho.
Cho hình chóp \(S.ABCD\)có đáy \(ABCD\) là hình chữ nhật. Gọi \(M,N\) lần lượt là trung điểm của \(AB,SD\). Tính tỉ số thể tích của hai khối chóp \(MNCD\) và \(S.ABCD\).


Cho hình chóp \(S.ABCD\)có đáy \(ABCD\) là hình chữ nhật. Gọi \(M,N\) lần lượt là trung điểm của \(AB,SD\). Tính tỉ số thể tích của hai khối chóp \(MNCD\) và \(S.ABCD\). A. \(\frac{{{V_{NMCD}}}}{{{V_{S.ABCD}}}} = \frac{1}{3}\). B. \(\frac{{{V_{NMCD}}}}{{{V_{S.ABCD}}}} = \frac{1}{8}\). C. \(\frac{{{V_{NMCD}}}}{{{V_{S.ABCD}}}} = \frac{1}{2}\). D. … [Đọc thêm...] vềCho hình chóp \(S.ABCD\)có đáy \(ABCD\) là hình chữ nhật. Gọi \(M,N\) lần lượt là trung điểm của \(AB,SD\). Tính tỉ số thể tích của hai khối chóp \(MNCD\) và \(S.ABCD\).

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều, \(SA \bot \left( {ABC} \right)\). Mặt phẳng \(\left( \alpha \right)\) đi qua trung điểm \(I\) của cạnh \(AC\) và vuông góc với \(AB\) chia khối chóp thành hai phần có thể tích là \({V_1}\) và \({V_2}\) \(\left( {{V_1} < {V_2}} \right)\). Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}\).
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều, \(SA \bot \left( {ABC} \right)\). Mặt phẳng \(\left( \alpha \right)\) đi qua trung điểm \(I\) của cạnh \(AC\) và vuông góc với \(AB\) chia khối chóp thành hai phần có thể tích là \({V_1}\) và \({V_2}\) \(\left( {{V_1} < {V_2}} \right)\). Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}\). A. \(\frac{4}{7}\). B. … [Đọc thêm...] vềCho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều, \(SA \bot \left( {ABC} \right)\). Mặt phẳng \(\left( \alpha \right)\) đi qua trung điểm \(I\) của cạnh \(AC\) và vuông góc với \(AB\) chia khối chóp thành hai phần có thể tích là \({V_1}\) và \({V_2}\) \(\left( {{V_1} < {V_2}} \right)\). Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}\).
Cho hình lăng trụ \(ABC.A’B’C’\) có thể tích là \(V\). Điểm \(M\) nằm trên cạnh \(AA’\) sao cho \(AM = 2MA’\). Gọi \(V’\) là thể tích của khối chóp \(M.BCC’B’\). Tính tỉ số \(\frac{{V’}}{V}\).
Cho hình lăng trụ \(ABC.A'B'C'\) có thể tích là \(V\). Điểm \(M\) nằm trên cạnh \(AA'\) sao cho \(AM = 2MA'\). Gọi \(V'\) là thể tích của khối chóp \(M.BCC'B'\). Tính tỉ số \(\frac{{V'}}{V}\). A. \(\frac{{V'}}{V} = \frac{1}{3}\). B. \(\frac{{V'}}{V} = \frac{1}{2}\). C. \(\frac{{V'}}{V} = \frac{3}{4}\). D. \(\frac{{V'}}{V} = \frac{2}{3}\). Lời giải: Cách … [Đọc thêm...] vềCho hình lăng trụ \(ABC.A’B’C’\) có thể tích là \(V\). Điểm \(M\) nằm trên cạnh \(AA’\) sao cho \(AM = 2MA’\). Gọi \(V’\) là thể tích của khối chóp \(M.BCC’B’\). Tính tỉ số \(\frac{{V’}}{V}\).
Cho hình hộp \(ABCD.A’B’C’D’\)có \(I\)là giao điểm của \(AC\)và \(BD\). Gọi \({V_1}\)và \({V_2}\) lần lượt là thể tích của các khối \(ABCD.A’B’C’D’\) và \(I.A’B’C’\). Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}\).
Cho hình hộp \(ABCD.A'B'C'D'\)có \(I\)là giao điểm của \(AC\)và \(BD\). Gọi \({V_1}\)và \({V_2}\) lần lượt là thể tích của các khối \(ABCD.A'B'C'D'\) và \(I.A'B'C'\). Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}\). A. \(\frac{{{V_1}}}{{{V_2}}} = 6\). B. \(\frac{{{V_1}}}{{{V_2}}} = \frac{3}{2}\). C. \(\frac{{{V_1}}}{{{V_2}}} = 2\). D. \(\frac{{{V_1}}}{{{V_2}}} = 3\). Lời … [Đọc thêm...] vềCho hình hộp \(ABCD.A’B’C’D’\)có \(I\)là giao điểm của \(AC\)và \(BD\). Gọi \({V_1}\)và \({V_2}\) lần lượt là thể tích của các khối \(ABCD.A’B’C’D’\) và \(I.A’B’C’\). Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}\).
Cho hình chóp \(S.ABC\) có đáy là tam giác vuông tại \(A,\,\,AC = a,\,\,I\) là trung điểm \(SC\). Hình chiếu vuông góc của \(S\) lên \(\left( {ABC} \right)\) là trung điểm \(H\) của \(BC\). Mặt phẳng \(\left( {SAB} \right)\) tạo với \(\left( {ABC} \right)\) một góc \(60^\circ \). Tính khoảng cách từ \(I\) đến mặt phẳng \(\left( {SAB} \right)\).
Cho hình chóp \(S.ABC\) có đáy là tam giác vuông tại \(A,\,\,AC = a,\,\,I\) là trung điểm \(SC\). Hình chiếu vuông góc của \(S\) lên \(\left( {ABC} \right)\) là trung điểm \(H\) của \(BC\). Mặt phẳng \(\left( {SAB} \right)\) tạo với \(\left( {ABC} \right)\) một góc \(60^\circ \). Tính khoảng cách từ \(I\) đến mặt phẳng \(\left( {SAB} \right)\). A. \(\frac{{\sqrt 3 … [Đọc thêm...] vềCho hình chóp \(S.ABC\) có đáy là tam giác vuông tại \(A,\,\,AC = a,\,\,I\) là trung điểm \(SC\). Hình chiếu vuông góc của \(S\) lên \(\left( {ABC} \right)\) là trung điểm \(H\) của \(BC\). Mặt phẳng \(\left( {SAB} \right)\) tạo với \(\left( {ABC} \right)\) một góc \(60^\circ \). Tính khoảng cách từ \(I\) đến mặt phẳng \(\left( {SAB} \right)\).
Cho lăng trụ đứng \(ABC.A’B’C’\) có đáy là tam giác vuông và \(AB = BC = 2a\sqrt 6 \), \(M\) là trung điểm của \(BC\), góc giữa đường thẳng \(AM\) và mặt phẳng \(\left( {ABC} \right)\)là \(30^\circ \),Tính khoảng cách \(d\) của hai đường thẳng \(AM\) và \(B’C\).
Cho lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác vuông và \(AB = BC = 2a\sqrt 6 \), \(M\) là trung điểm của \(BC\), góc giữa đường thẳng \(AM\) và mặt phẳng \(\left( {ABC} \right)\)là \(30^\circ \),Tính khoảng cách \(d\) của hai đường thẳng \(AM\) và \(B'C\). A. \(d = \frac{{a\sqrt {318} }}{{53}}\). B. \(d = \frac{{3a\sqrt {318} }}{{53}}\). C. \(d = \frac{{2a\sqrt … [Đọc thêm...] vềCho lăng trụ đứng \(ABC.A’B’C’\) có đáy là tam giác vuông và \(AB = BC = 2a\sqrt 6 \), \(M\) là trung điểm của \(BC\), góc giữa đường thẳng \(AM\) và mặt phẳng \(\left( {ABC} \right)\)là \(30^\circ \),Tính khoảng cách \(d\) của hai đường thẳng \(AM\) và \(B’C\).