• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Trắc nghiệm Logarit và hàm số lôgarit

Cho \(a,b\) là hai số thực dương, khác 1 và thỏa mãn \(\log _a^2\left( {ab} \right) = 4{\log _b}\frac{{{a^2}}}{b}\). Giá trị của \({\log _a}b\) bằng

Ngày 14/05/2024 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:Gia tri bieu thuc Loagrit

Cho \(a,b\) là hai số thực dương, khác 1 và thỏa mãn \(\log _a^2\left( {ab} \right) = 4{\log _b}\frac{{{a^2}}}{b}\). Giá trị của \({\log _a}b\) bằng A. \( - 1\).  B. \(1\).  C. \(3\).  D. \( - 3\). Lời giải: +) Đặt \(t = {\log _a}b\), do \(a,b\) là hai số thực dương, khác 1 nên \(t \ne 0\). +) Ta có \(\log _a^2\left( {ab} \right) = 4{\log … [Đọc thêm...] vềCho \(a,b\) là hai số thực dương, khác 1 và thỏa mãn \(\log _a^2\left( {ab} \right) = 4{\log _b}\frac{{{a^2}}}{b}\). Giá trị của \({\log _a}b\) bằng

Cho các số thực \(a,b\) thuộc khoảng \(\left( {0;1} \right)\) thoả mãn \({\log _{ab}}a = \log _a^2\left( {\frac{a}{b}} \right)\). Giá trị của biểu thức \(\frac{{\ln a}}{{\ln b}}\) bằng.

Ngày 14/05/2024 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:Gia tri bieu thuc Loagrit

Cho các số thực \(a,b\) thuộc khoảng \(\left( {0;1} \right)\) thoả mãn \({\log _{ab}}a = \log _a^2\left( {\frac{a}{b}} \right)\). Giá trị của biểu thức \(\frac{{\ln a}}{{\ln b}}\) bằng. A. \(\sqrt 5  - 1\).  B. \(\frac{{\sqrt 5  - 1}}{2}\).  C. \(\frac{{1 + \sqrt 5 }}{2}\).  D. \(\frac{{ - 1 - \sqrt 5 }}{2}\). Lời giải: Giả thiết: … [Đọc thêm...] vềCho các số thực \(a,b\) thuộc khoảng \(\left( {0;1} \right)\) thoả mãn \({\log _{ab}}a = \log _a^2\left( {\frac{a}{b}} \right)\). Giá trị của biểu thức \(\frac{{\ln a}}{{\ln b}}\) bằng.

Gọi \(S\) là tập các số nguyên \(x\) sao cho tồn tại số thực \(y\) thỏa mãn \({2^{x + y + 1}} = {\left( {\sqrt 3 } \right)^{{x^2} + {y^2}}}\). Tính tổng các phần tử của tập \(S\)?

Ngày 14/05/2024 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:Gia tri bieu thuc Loagrit

Gọi \(S\) là tập các số nguyên \(x\) sao cho tồn tại số thực \(y\) thỏa mãn \({2^{x + y + 1}} = {\left( {\sqrt 3 } \right)^{{x^2} + {y^2}}}\). Tính tổng các phần tử của tập \(S\)? A. \(5\).  B. \(6\).  C. \(3\).  D. \(2\). Lời giải: \({2^{x + y + 1}} = {\left( {\sqrt 3 } \right)^{{x^2} + {y^2}}} \Leftrightarrow {4^{x + y + 1}} = {3^{{x^2} + … [Đọc thêm...] vềGọi \(S\) là tập các số nguyên \(x\) sao cho tồn tại số thực \(y\) thỏa mãn \({2^{x + y + 1}} = {\left( {\sqrt 3 } \right)^{{x^2} + {y^2}}}\). Tính tổng các phần tử của tập \(S\)?

 Cho \(a,\,b\)là các số thực thỏa mãn \(1 < a \le b \le {a^6}\).Gọi \(M,\,m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P = {\left[ {{{\log }_a}\left( {\frac{{{a^2}}}{b}} \right)} \right]^2} + 3{\log _{\sqrt[4]{a}}}b – 1\) . Tính \(M + 2m\)?

Ngày 14/05/2024 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:Gia tri bieu thuc Loagrit

 Cho \(a,\,b\)là các số thực thỏa mãn \(1 < a \le b \le {a^6}\).Gọi \(M,\,m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P = {\left[ {{{\log }_a}\left( {\frac{{{a^2}}}{b}} \right)} \right]^2} + 3{\log _{\sqrt[4]{a}}}b - 1\) . Tính \(M + 2m\)? A. \(12\).  B. \(99\).  C. \(87\).  D. \(111\). Lời giải: Vì \(1 < a … [Đọc thêm...] về Cho \(a,\,b\)là các số thực thỏa mãn \(1 < a \le b \le {a^6}\).Gọi \(M,\,m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P = {\left[ {{{\log }_a}\left( {\frac{{{a^2}}}{b}} \right)} \right]^2} + 3{\log _{\sqrt[4]{a}}}b – 1\) . Tính \(M + 2m\)?

Số giá trị nguyên của tham số \(m\) để hàm số \(f\left( x \right) = {\left( {\log _2^2\left( {2x} \right) – 2m{{\log }_2}\left( {\frac{x}{2}} \right)} \right)^{\frac{1}{3}}}\) xác định với mọi \(x\) dương. 

Ngày 14/05/2024 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:Gia tri bieu thuc Loagrit

Số giá trị nguyên của tham số \(m\) để hàm số \(f\left( x \right) = {\left( {\log _2^2\left( {2x} \right) - 2m{{\log }_2}\left( {\frac{x}{2}} \right)} \right)^{\frac{1}{3}}}\) xác định với mọi \(x\) dương.  A. \(3\).  B. \(4\).  C. \(5\).  D. \(2\). Lời giải: Điều kiện xác định \(\left\{ {\begin{array}{*{20}{c}}{x > 0}\\{\log _2^2\left( … [Đọc thêm...] vềSố giá trị nguyên của tham số \(m\) để hàm số \(f\left( x \right) = {\left( {\log _2^2\left( {2x} \right) – 2m{{\log }_2}\left( {\frac{x}{2}} \right)} \right)^{\frac{1}{3}}}\) xác định với mọi \(x\) dương. 

Có bao nhiêu số nguyên $x$ thỏa mãn $\log_{3} \frac{\left(x^{2}-4 x\right)^{2}}{4096}<\log_{2} \frac{x^{2}-4 x}{27}$ ?

Ngày 28/05/2023 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:Logarit nang cao

Có bao nhiêu số nguyên $x$ thỏa mãn $\log_{3} \frac{\left(x^{2}-4 x\right)^{2}}{4096} … [Đọc thêm...] vềCó bao nhiêu số nguyên $x$ thỏa mãn $\log_{3} \frac{\left(x^{2}-4 x\right)^{2}}{4096}<\log_{2} \frac{x^{2}-4 x}{27}$ ?

Có bao nhiêu cặp số nguyên $(x ; y)$ thỏa mãn \(\log {2}\left(x^{2}+y^{2}+4 x\right)+\log {3}\left(x^{2}+y^{2}\right) \leq \log {2} x+\log {3}\left(15 x^{2}+15 y^{2}+48 x\right) ?\)

Ngày 28/05/2023 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:Logarit nang cao, VDC Toan 2023

Câu 44: Có bao nhiêu cặp số nguyên $(x ; y)$ thỏa mãn $$\log _{2}\left(x^{2}+y^{2}+4 x\right)+\log _{3}\left(x^{2}+y^{2}\right) \leq \log _{2} x+\log _{3}\left(15 x^{2}+15 y^{2}+48 x\right) ?$$A. 22.B. 28 .C. 15 .D. 12 .     … [Đọc thêm...] vềCó bao nhiêu cặp số nguyên $(x ; y)$ thỏa mãn \(\log {2}\left(x^{2}+y^{2}+4 x\right)+\log {3}\left(x^{2}+y^{2}\right) \leq \log {2} x+\log {3}\left(15 x^{2}+15 y^{2}+48 x\right) ?\)

Có bao nhiêu cặp số nguyên (x;y) thỏa mãn \({\log _3}\left( {{x^2} + {y^2} + x} \right) + {\log _2}\left( {{x^2} + {y^2}} \right) \le {\log _3}x + {\log _2}\left( {{x^2} + {y^2} + 24x} \right)?\)

Ngày 16/03/2023 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:Ham so Logarit VDC, VDC Toan 2023

Có bao nhiêu cặp số nguyên \((x;y)\) thỏa mãn \({\log _3}\left( {{x^2} + {y^2} + x} \right) + {\log _2}\left( {{x^2} + {y^2}} \right) \le {\log _3}x + {\log _2}\left( {{x^2} + {y^2} + 24x} \right)?\) A. 89.  B. 48.  C. 90.  D. 49. Lời giải: Chọn B Điều kiện: \(x > 0\) . Ta có: \({\log … [Đọc thêm...] vềCó bao nhiêu cặp số nguyên (x;y) thỏa mãn \({\log _3}\left( {{x^2} + {y^2} + x} \right) + {\log _2}\left( {{x^2} + {y^2}} \right) \le {\log _3}x + {\log _2}\left( {{x^2} + {y^2} + 24x} \right)?\)

Cho các số thực dương \(a\), \(b\) thỏa mãn \(\ln \frac{{2 – 2ab}}{{a + b}} = 2ab + a + b – 2\). Tìm giá trị nhỏ nhất \({P_{\min }}\) của \(P = a + 2b\).

Ngày 05/03/2023 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:HAM DAC TRUNG MU LOGA, MU - LOGA VDC, VDC Toan 2023

Cho các số thực dương \(a\), \(b\) thỏa mãn \(\ln \frac{{2 - 2ab}}{{a + b}} = 2ab + a + b - 2\). Tìm giá trị nhỏ nhất \({P_{\min }}\) của \(P = a + 2b\). A. \({P_{\min }} = \frac{{2\sqrt {10} - 3}}{2}\). B. \({P_{\min }} = \frac{{3\sqrt {10} - 7}}{2}\). C. \({P_{\min }} = \frac{{2\sqrt {10} - 1}}{2}\). D. \({P_{\min }} = \frac{{2\sqrt {10} - 5}}{2}\). Lời giải Điều … [Đọc thêm...] vềCho các số thực dương \(a\), \(b\) thỏa mãn \(\ln \frac{{2 – 2ab}}{{a + b}} = 2ab + a + b – 2\). Tìm giá trị nhỏ nhất \({P_{\min }}\) của \(P = a + 2b\).

\({2^{2{x^2} – 15x + 100}} – {2^{{x^2} + 10x – 50}} + {x^2} – 25x + 150 < 0\) là

Ngày 03/03/2023 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:HAM DAC TRUNG MU LOGA, MU - LOGA VDC, VDC Toan 2023

\({2^{2{x^2} - 15x + 100}} - {2^{{x^2} + 10x - 50}} + {x^2} - 25x + 150 < 0\) là A. \(4\). B. \(6.\) C. \(3\). D. \(5\). Lời giải Ta có \({2^{2{x^2} - 15x + 100}} - {2^{{x^2} + 10x - 50}} + {x^2} - 25x + 150 < 0\) \( \Leftrightarrow {2^{2{x^2} - 15x + 100}} - {2^{{x^2} + 10x - 50}} + 2{x^2} - 15x + 100 - \left( {{x^2} + 10x - 50} \right) < … [Đọc thêm...] về\({2^{2{x^2} – 15x + 100}} – {2^{{x^2} + 10x – 50}} + {x^2} – 25x + 150 < 0\) là

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 5
  • Trang 6
  • Trang 7
  • Trang 8
  • Trang 9
  • Interim pages omitted …
  • Trang 52
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.