• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Trắc nghiệm Logarit và hàm số lôgarit / \({2^{2{x^2} – 15x + 100}} – {2^{{x^2} + 10x – 50}} + {x^2} – 25x + 150 < 0\) là

\({2^{2{x^2} – 15x + 100}} – {2^{{x^2} + 10x – 50}} + {x^2} – 25x + 150 < 0\) là

Ngày 03/03/2023 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:HAM DAC TRUNG MU LOGA, MU - LOGA VDC, VDC Toan 2023

\({2^{2{x^2} – 15x + 100}} – {2^{{x^2} + 10x – 50}} + {x^2} – 25x + 150 < 0\) là

A. \(4\).

B. \(6.\)

C. \(3\).

D. \(5\).

Lời giải

Ta có \({2^{2{x^2} – 15x + 100}} – {2^{{x^2} + 10x – 50}} + {x^2} – 25x + 150 < 0\)

\( \Leftrightarrow {2^{2{x^2} – 15x + 100}} – {2^{{x^2} + 10x – 50}} + 2{x^2} – 15x + 100 – \left( {{x^2} + 10x – 50} \right) < 0\).

Đặt \(a = 2{x^2} – 15x + 100\), \(b = {x^2} + 10x – 50\).

Khi đó bất phương trình trở thành: \({2^a} – {2^b} + a – b < 0\) \( \Leftrightarrow – {2^a} – a > – {2^b} – b\) \(\left( 1 \right)\).

Xét hàm số \(f\left( t \right) = – {2^t} – t\) có \(f’\left( t \right) = – {2^t}\ln 2 – 1 < 0\) với \(\forall t \in \mathbb{R}\).

Suy ra \(f\left( t \right)\) nghịch biến trên \(\mathbb{R}\).

Bất phương trình \(\left( 1 \right) \Leftrightarrow f\left( a \right) > f\left( b \right) \Leftrightarrow a < b \Leftrightarrow 2{x^2} – 15x + 100 < {x^2} + 10x – 50\)

\( \Leftrightarrow {x^2} – 25x + 150 < 0 \Leftrightarrow 10 < x < 15\) .

Mà \(x \in \mathbb{Z}\) nên \(x \in \left\{ {11;12;13;14} \right\}\).

Vậy bất phương trình có \(4\) nghiệm nguyên.

===========

Đây là các câu VD-VDC trong đề ÔN TẬP HÀM SỐ MŨ – LOGARIT.

Bài liên quan:

  1. Cho hàm số $f(x)$ có đồ thị hàm số $f^{\prime}(x)$ như hình vẽ dưới đây. Có bao nhiêu số nguyên $m>-10$ để hàm số $y=f(x+m)$ nghịch biến trên $(0 ; 2)$ ?
  2. Biết đồ thị hàm số $y=\frac{1}{4} x^{4}-(3 m+1) x^{2}+2(m+1)$ có ba điểm cực trị $A, B, C$ sao cho $\triangle A B C$ nhận gốc tọa độ $O$ làm trọng tâm. Mệnh đề nào dưới đây đúng?
  3. Cho hàm số $y=\frac{1}{3} m x^{3}-(m-1) x^{2}+3(m-2) x+2023$ với $m$ là tham số. Tìm m để hàm số có 2 cực trị
  4. Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ {1\,;\,2023} \right]\) để phương trình \(\left( {{4^{x + 1}} – 65 \cdot {2^x} + 16} \right) \cdot \sqrt {{{\log }_3}{x^2} – m} = 0\) có \(2\) nghiệm nguyên.

  5. Số nghiệm của phương trình \({\log _3}\left( {4x – {x^2}} \right) + {\log _{\frac{1}{3}}}\left( {\frac{2}{3}x – 1} \right) = 1\) là

  6. Tổng tất cả các nghiệm của phương trình \({\log _{\sqrt 2 }}(x – 1) + {\log _2}{(x – 5)^2} = 4\)là:

  7. Gọi \(S\)là tập nghiệm của phương trình \({\log _{\sqrt 3 }}(2x – 1) – {\log _3}({x^2} + 2) = 1\). Số phần tử của \(S\)là:

  8. Có bao nhiêu giá trị nguyên của tham số \(m\) thuộc khoảng \(\left( { – 2023\,;2023} \right)\) để phương trình \({3.6^x} – \left( {7m – 48} \right).\sqrt {{6^x}} + 2{m^2} – 16m = 0\) có hai nghiệm phân biệt \({x_1},{x_2}\) thỏa mãn \({x_1} + {x_2} \ge 2\,\,?\)

  9. Tìm \(m\) để bất phương trình \({3^x} + {4^x} + {5^x} + {6^x} \ge 4 + mx\) có tập nghiệm là \(\mathbb{R}\).

  10. Tìm các giá trị thực của tham số \(m\) để phương trình \(\log _2^2x – 5{\log _2}x + 2m – 6 = 0\) có hai nghiệm thực \({x_1};\,{x_2}\) thỏa mãn \(\left( {{x_1} + 2} \right)\left( {{x_2} + 2} \right) = 60\).

  11. Cho \(0 \le x \le 2020\) và \({\log _9}(9x + 18) + x – 2y = {9^y}\).Có bao nhiêu cặp số \((x\,;y)\) nguyên thỏa mãn các điều kiện trên?

  12. Tập nghiệm S của bất phương trình \({\log _{\frac{2}{3}}}\left( {2x – 4} \right) + {\log _{\frac{2}{3}}}\left( {x + 3} \right) < {\log _{\frac{3}{2}}}\frac{1}{{28}}\) là

  13. Cho \(0 \le x \le 2022\) và \({\log _2}\left( {2x + 2} \right) + x – 3y = {8^y}\). Có bao nhiêu cặp \(\left( {x;y} \right)\) nguyên thỏa mãn các điều kiện trên?

  14. Có bao nhiêu cặp số nguyên \(\left( {x,y} \right)\) thỏa mãn \(0 \le x \le 2023\) và \({\log _3}\left( {9x + 18} \right) + x = 3y + {27^y}.\)

  15. Có bao nhiêu giá trị nguyên của tham số thực \(m\) để phương trình \(4{\left( {{{\log }_{25}}x} \right)^2} – {\log _{\frac{1}{5}}}x + 1 – 3m = 0\) có hai nghiệm phân biệt thuộc khoảng \(\left( {0;1} \right)\).

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.