• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Trắc nghiệm Logarit và hàm số lôgarit / Cho các số thực \(a,b\) thuộc khoảng \(\left( {0;1} \right)\) thoả mãn \({\log _{ab}}a = \log _a^2\left( {\frac{a}{b}} \right)\). Giá trị của biểu thức \(\frac{{\ln a}}{{\ln b}}\) bằng.

Cho các số thực \(a,b\) thuộc khoảng \(\left( {0;1} \right)\) thoả mãn \({\log _{ab}}a = \log _a^2\left( {\frac{a}{b}} \right)\). Giá trị của biểu thức \(\frac{{\ln a}}{{\ln b}}\) bằng.

Ngày 14/05/2024 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:Gia tri bieu thuc Loagrit

Cho các số thực \(a,b\) thuộc khoảng \(\left( {0;1} \right)\) thoả mãn \({\log _{ab}}a = \log _a^2\left( {\frac{a}{b}} \right)\). Giá trị của biểu thức \(\frac{{\ln a}}{{\ln b}}\) bằng.

A. \(\sqrt 5  – 1\).

 B. \(\frac{{\sqrt 5  – 1}}{2}\).

 C. \(\frac{{1 + \sqrt 5 }}{2}\).

 D. \(\frac{{ – 1 – \sqrt 5 }}{2}\).

Lời giải:

Giả thiết: \({\log _{ab}}a = \log _a^2\left( {\frac{a}{b}} \right) \Leftrightarrow \frac{{{{\log }_a}a}}{{{{\log }_a}ab}} = {\left( {{{\log }_a}a – {{\log }_a}b} \right)^2}\)\( \Leftrightarrow \frac{1}{{1 + {{\log }_a}b}} = {\left( {1 – {{\log }_a}b} \right)^2}\)

Đặt \(t = {\log _a}b\). 

Do \(a,\,b \in \left( {0;1} \right) \Rightarrow {\log _a}b > 0\)\( \Rightarrow t > 0\).

Từ giả thiết ta có \(\frac{1}{{1 + t}} = {\left( {1 – t} \right)^2} \Leftrightarrow {\left( {1 – t} \right)^2}\left( {1 + t} \right) = 1 \Leftrightarrow {t^3} – {t^2} – t = 0\)\( \Leftrightarrow \left[ \begin{array}{l}t = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,({\rm{ktm}})\\t = \frac{{1 – \sqrt 5 }}{2}\,\,\,\,({\rm{ktm}})\\t = \frac{{1 + \sqrt 5 }}{2}\,\,\,\,({\rm{tm}})\end{array} \right.\)

Vậy \(\frac{{\ln a}}{{\ln b}} = {\log _b}a = \frac{1}{{{{\log }_a}b}} = \frac{1}{{\frac{{1 + \sqrt 5 }}{2}}} = \frac{{\sqrt 5  – 1}}{2}\).

===========
Đây là các câu File: Câu 39 GIÁ TRỊ BIỂU THỨC LOGARIT VẬN DỤNG – PHÁT TRIỂN Toán TK – 2024.

Bài liên quan:

  1. Số giá trị nguyên của tham số \(m\) để hàm số \(f\left( x \right) = {\left( {\log _2^2\left( {2x} \right) – 2m{{\log }_2}\left( {\frac{x}{2}} \right)} \right)^{\frac{1}{3}}}\) xác định với mọi \(x\) dương. 
  2. Gọi \(S\) là tập các số nguyên \(x\) sao cho tồn tại số thực \(y\) thỏa mãn \({2^{x + y + 1}} = {\left( {\sqrt 3 } \right)^{{x^2} + {y^2}}}\). Tính tổng các phần tử của tập \(S\)?
  3. Cho \(a,b\) là hai số thực dương, khác 1 và thỏa mãn \(\log _a^2\left( {ab} \right) = 4{\log _b}\frac{{{a^2}}}{b}\). Giá trị của \({\log _a}b\) bằng
  4.   Biết phương trình \({\log _3}\left( {{3^{2x – 1}} – {3^{x – 1}} + 1} \right) = x\) có hai nghiệm \({x_1};{x_2}\)(với \({x_1} < {x_2}\)). Tính giá trị của biểu thức \(P = \sqrt {{3^{{x_1}}}}  – \sqrt {{3^{{x_2}}}} \).
  5. Cho \(a\,,\,\,b\) là các số thực dương khác 1 thoả mãn \({\log _a}\left( {{a^2}b} \right){\log _b}^2\left( {a{b^2}} \right) = 27{\log _a}b\) thì \(b = {a^\alpha }\), giá trị \(\alpha \) nằm trong khoảng nào sau đây
  6.   Cho hai số thực dương \(a,\,\,b\) (\(b \ne 1\)) và thỏa mãn \({a^2} – 4ab – 5{b^2} = 0\). Tính giá trị biểu thức \(T = {\log _{125}}\frac{a}{b}.{\log _b}\frac{{{a^3}}}{{125b}}\).
  7.  Cho hai số thực dương \(a,{\rm{ }}b\) thỏa mãn \(\log _{20}^{}a – \log _8^{}b = 0,\,\log _8^{}b – \log _{125}^{}\left( {5a + 12b} \right) = 0\). Tính \(P = \log _2^{}\left( {a + b} \right) – \log _2^{}b\).
  8. Cho \(a\) và \(b\) là hai số thực dương khác 1 và thỏa mãn \(\log _a^2\left( {\frac{b}{{{a^2}}}} \right).{\log _a}\left( {ab} \right) – 4 = 0\). Giá trị của \({\log _b}\left( {a{b^2}} \right)\) bằng
  9.   Cho \(x,\,y\) là hai số thực dương khác \(1.\) Biết \({\log _3}x = {\log _y}9\) và \(xy = 81.\) 

    Khi đó \(\log _3^2\left( {\frac{x}{y}} \right)\) bằng

  10.  Cho \(a > 0,b > 0,{a^2}b \ne 1,a{b^2} \ne 1\) và \({\log _{{a^2}b}}\left( {\frac{{a{b^3}}}{{\sqrt {ab} }}} \right) = \frac{8}{5}\). Tính \({\log _{a{b^2}}}b\).
  11. Có bao nhiêu cặp số nguyên \(\left( {a\,;\,\,b} \right)\) thoả mãn \({\log _2}\left( {{3^{{a^2}}} + 1} \right) + {b^2} – 3b \le 0\)?
  12.  Cho các số \(a,b > 0\) thỏa mãn \(3 + {\log _3}a = 5 + {\log _5}b = {\log _{15}}(a + b)\). Tính giá trị của biểu thức \(\frac{1}{a} + \frac{1}{b}\).
  13. Cho các số thực dương \(a \ne 1,\,b \ne 1\) thỏa mãn \({\log _3}a = {\log _b}81\) và tích \(ab = 729\). Tính giá trị của biểu thức \({\left( {{{\log }_3}\frac{a}{b}} \right)^2}\).
  14.   Cho các số thực \(a,b,c\,\, > 1\) thỏa mãn \({\log _a}3 = 2,\,\,{\log _{{b^3}}}3 = \frac{1}{4}\) và \({\log _{a{b^2}{c^4}}}3 = \frac{2}{{15}}\). Giá trị \(\,P = {\log _{{c^5}}}3\) bằng
  15. Cho hai số thực \(a\) và \(b\) biết \(a > b > 1\) và thỏa mãn \(\log _{\frac{a}{b}}^2\left( {{a^2}} \right) + 3{\log _b}\left( {\frac{a}{b}} \right) = 15\). Giá trị của \({\log _a}b\) bằng

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.