Số giá trị nguyên của tham số \(m\) để hàm số \(f\left( x \right) = {\left( {\log _2^2\left( {2x} \right) - 2m{{\log }_2}\left( {\frac{x}{2}} \right)} \right)^{\frac{1}{3}}}\) xác định với mọi \(x\) dương. A. \(3\). B. \(4\). C. \(5\). D. \(2\). Lời giải: Điều kiện xác định \(\left\{ {\begin{array}{*{20}{c}}{x > 0}\\{\log _2^2\left( … [Đọc thêm...] vềSố giá trị nguyên của tham số \(m\) để hàm số \(f\left( x \right) = {\left( {\log _2^2\left( {2x} \right) – 2m{{\log }_2}\left( {\frac{x}{2}} \right)} \right)^{\frac{1}{3}}}\) xác định với mọi \(x\) dương.
Gia tri bieu thuc Loagrit
Gọi \(S\) là tập các số nguyên \(x\) sao cho tồn tại số thực \(y\) thỏa mãn \({2^{x + y + 1}} = {\left( {\sqrt 3 } \right)^{{x^2} + {y^2}}}\). Tính tổng các phần tử của tập \(S\)?
Gọi \(S\) là tập các số nguyên \(x\) sao cho tồn tại số thực \(y\) thỏa mãn \({2^{x + y + 1}} = {\left( {\sqrt 3 } \right)^{{x^2} + {y^2}}}\). Tính tổng các phần tử của tập \(S\)? A. \(5\). B. \(6\). C. \(3\). D. \(2\). Lời giải: \({2^{x + y + 1}} = {\left( {\sqrt 3 } \right)^{{x^2} + {y^2}}} \Leftrightarrow {4^{x + y + 1}} = {3^{{x^2} + … [Đọc thêm...] vềGọi \(S\) là tập các số nguyên \(x\) sao cho tồn tại số thực \(y\) thỏa mãn \({2^{x + y + 1}} = {\left( {\sqrt 3 } \right)^{{x^2} + {y^2}}}\). Tính tổng các phần tử của tập \(S\)?
Cho \(a,b\) là hai số thực dương, khác 1 và thỏa mãn \(\log _a^2\left( {ab} \right) = 4{\log _b}\frac{{{a^2}}}{b}\). Giá trị của \({\log _a}b\) bằng
Cho \(a,b\) là hai số thực dương, khác 1 và thỏa mãn \(\log _a^2\left( {ab} \right) = 4{\log _b}\frac{{{a^2}}}{b}\). Giá trị của \({\log _a}b\) bằng A. \( - 1\). B. \(1\). C. \(3\). D. \( - 3\). Lời giải: +) Đặt \(t = {\log _a}b\), do \(a,b\) là hai số thực dương, khác 1 nên \(t \ne 0\). +) Ta có \(\log _a^2\left( {ab} \right) = 4{\log … [Đọc thêm...] vềCho \(a,b\) là hai số thực dương, khác 1 và thỏa mãn \(\log _a^2\left( {ab} \right) = 4{\log _b}\frac{{{a^2}}}{b}\). Giá trị của \({\log _a}b\) bằng
Biết phương trình \({\log _3}\left( {{3^{2x – 1}} – {3^{x – 1}} + 1} \right) = x\) có hai nghiệm \({x_1};{x_2}\)(với \({x_1} < {x_2}\)). Tính giá trị của biểu thức \(P = \sqrt {{3^{{x_1}}}} – \sqrt {{3^{{x_2}}}} \).
Biết phương trình \({\log _3}\left( {{3^{2x - 1}} - {3^{x - 1}} + 1} \right) = x\) có hai nghiệm \({x_1};{x_2}\)(với \({x_1} < {x_2}\)). Tính giá trị của biểu thức \(P = \sqrt {{3^{{x_1}}}} - \sqrt {{3^{{x_2}}}} \). A. \(1 - \sqrt 3 \). B. \(1 + \sqrt 3 \). C. \(2 - \sqrt 3 \). D. \(2 + \sqrt 3 \). Lời giải: Điều kiện: … [Đọc thêm...] về Biết phương trình \({\log _3}\left( {{3^{2x – 1}} – {3^{x – 1}} + 1} \right) = x\) có hai nghiệm \({x_1};{x_2}\)(với \({x_1} < {x_2}\)). Tính giá trị của biểu thức \(P = \sqrt {{3^{{x_1}}}} – \sqrt {{3^{{x_2}}}} \).
Cho \(a\,,\,\,b\) là các số thực dương khác 1 thoả mãn \({\log _a}\left( {{a^2}b} \right){\log _b}^2\left( {a{b^2}} \right) = 27{\log _a}b\) thì \(b = {a^\alpha }\), giá trị \(\alpha \) nằm trong khoảng nào sau đây
Cho \(a\,,\,\,b\) là các số thực dương khác 1 thoả mãn \({\log _a}\left( {{a^2}b} \right){\log _b}^2\left( {a{b^2}} \right) = 27{\log _a}b\) thì \(b = {a^\alpha }\), giá trị \(\alpha \) nằm trong khoảng nào sau đây A. \(\left( { - 2;0} \right)\). B. \(\left( {0;2} \right)\). C. \(\left( {2;4} \right)\). D. \(\left( {4;5} \right)\). Lời … [Đọc thêm...] vềCho \(a\,,\,\,b\) là các số thực dương khác 1 thoả mãn \({\log _a}\left( {{a^2}b} \right){\log _b}^2\left( {a{b^2}} \right) = 27{\log _a}b\) thì \(b = {a^\alpha }\), giá trị \(\alpha \) nằm trong khoảng nào sau đây
Cho hai số thực dương \(a,\,\,b\) (\(b \ne 1\)) và thỏa mãn \({a^2} – 4ab – 5{b^2} = 0\). Tính giá trị biểu thức \(T = {\log _{125}}\frac{a}{b}.{\log _b}\frac{{{a^3}}}{{125b}}\).
Cho hai số thực dương \(a,\,\,b\) (\(b \ne 1\)) và thỏa mãn \({a^2} - 4ab - 5{b^2} = 0\). Tính giá trị biểu thức \(T = {\log _{125}}\frac{a}{b}.{\log _b}\frac{{{a^3}}}{{125b}}\). A. \(\frac{2}{3}\). B. \(\frac{3}{2}\). C. \(\frac{2}{5}\). D. \(1\). Lời giải: Từ giả thiết ta có \({a^2} - 4ab - 5{b^2} = 0 \Leftrightarrow {a^2} + ab - 5ab … [Đọc thêm...] về Cho hai số thực dương \(a,\,\,b\) (\(b \ne 1\)) và thỏa mãn \({a^2} – 4ab – 5{b^2} = 0\). Tính giá trị biểu thức \(T = {\log _{125}}\frac{a}{b}.{\log _b}\frac{{{a^3}}}{{125b}}\).
Cho hai số thực dương \(a,{\rm{ }}b\) thỏa mãn \(\log _{20}^{}a – \log _8^{}b = 0,\,\log _8^{}b – \log _{125}^{}\left( {5a + 12b} \right) = 0\). Tính \(P = \log _2^{}\left( {a + b} \right) – \log _2^{}b\).
Cho hai số thực dương \(a,{\rm{ }}b\) thỏa mãn \(\log _{20}^{}a - \log _8^{}b = 0,\,\log _8^{}b - \log _{125}^{}\left( {5a + 12b} \right) = 0\). Tính \(P = \log _2^{}\left( {a + b} \right) - \log _2^{}b\). A. \(P = 3\). B. \(P = 2\). C. \(P = 2\). D. \(P = 8\). Lời giải: Ta có \(\begin{array}{l}\log _{20}^{}a - \log _8^{}b = 0 … [Đọc thêm...] về Cho hai số thực dương \(a,{\rm{ }}b\) thỏa mãn \(\log _{20}^{}a – \log _8^{}b = 0,\,\log _8^{}b – \log _{125}^{}\left( {5a + 12b} \right) = 0\). Tính \(P = \log _2^{}\left( {a + b} \right) – \log _2^{}b\).
Cho \(a\) và \(b\) là hai số thực dương khác 1 và thỏa mãn \(\log _a^2\left( {\frac{b}{{{a^2}}}} \right).{\log _a}\left( {ab} \right) – 4 = 0\). Giá trị của \({\log _b}\left( {a{b^2}} \right)\) bằng
Cho \(a\) và \(b\) là hai số thực dương khác 1 và thỏa mãn \(\log _a^2\left( {\frac{b}{{{a^2}}}} \right).{\log _a}\left( {ab} \right) - 4 = 0\). Giá trị của \({\log _b}\left( {a{b^2}} \right)\) bằng A. \(\frac{7}{3}\). B. \(5\). C. \(1\). D. \(\frac{5}{3}\). Lời giải: \(\log _a^2\left( {\frac{b}{{{a^2}}}} \right).{\log _a}\left( {ab} \right) … [Đọc thêm...] vềCho \(a\) và \(b\) là hai số thực dương khác 1 và thỏa mãn \(\log _a^2\left( {\frac{b}{{{a^2}}}} \right).{\log _a}\left( {ab} \right) – 4 = 0\). Giá trị của \({\log _b}\left( {a{b^2}} \right)\) bằng
Cho \(x,\,y\) là hai số thực dương khác \(1.\) Biết \({\log _3}x = {\log _y}9\) và \(xy = 81.\)
Khi đó \(\log _3^2\left( {\frac{x}{y}} \right)\) bằng
Cho \(x,\,y\) là hai số thực dương khác \(1.\) Biết \({\log _3}x = {\log _y}9\) và \(xy = 81.\) Khi đó \(\log _3^2\left( {\frac{x}{y}} \right)\) bằng A. \(2.\) B. \(4.\) C. \(6.\) D. \(8.\) Lời giải: +) Với \(x,\,y\) là hai số thực dương khác \(1,\) ta có: \(xy = 81 \Rightarrow y = \frac{{81}}{x}.\) Khi … [Đọc thêm...] về Cho \(x,\,y\) là hai số thực dương khác \(1.\) Biết \({\log _3}x = {\log _y}9\) và \(xy = 81.\)
Khi đó \(\log _3^2\left( {\frac{x}{y}} \right)\) bằng
Cho \(a > 0,b > 0,{a^2}b \ne 1,a{b^2} \ne 1\) và \({\log _{{a^2}b}}\left( {\frac{{a{b^3}}}{{\sqrt {ab} }}} \right) = \frac{8}{5}\). Tính \({\log _{a{b^2}}}b\).
Cho \(a > 0,b > 0,{a^2}b \ne 1,a{b^2} \ne 1\) và \({\log _{{a^2}b}}\left( {\frac{{a{b^3}}}{{\sqrt {ab} }}} \right) = \frac{8}{5}\). Tính \({\log _{a{b^2}}}b\). A. \(\frac{7}{3}\). B. \(21\). C. \(\frac{7}{3}\). D. \(\frac{3}{7}\). Lời giải: Nếu \(a = 1\) thì \({\log _{{a^2}b}}\frac{{a{b^3}}}{{\sqrt {ab} }} = {\log … [Đọc thêm...] về Cho \(a > 0,b > 0,{a^2}b \ne 1,a{b^2} \ne 1\) và \({\log _{{a^2}b}}\left( {\frac{{a{b^3}}}{{\sqrt {ab} }}} \right) = \frac{8}{5}\). Tính \({\log _{a{b^2}}}b\).