DẠNG TOÁN PHƯƠNG PHÁP HÀM ĐẶC TRƯNG, BIẾN ĐỔI MŨ, LOGARIT – phát triển theo đề tham khảo Toán 2021 ĐỀ BÀI: Cho \(a,b,c\) là các số thực thỏa mãn biểu thức sau đây \(2\left( {{2^{{a^2} + {b^2} + {c^2}}} - 1} \right) + {\left( {a - 1} \right)^2} + {\left( {b - 1} \right)^2} + {\left( {c - 1} \right)^2} = {4^{a + b + c}}\). Đặt \(P = \frac{{3a + 2b + c}}{{a … [Đọc thêm...] vềCho \(a,b,c\) là các số thực thỏa mãn biểu thức sau đây \(2\left( {{2^{{a^2} + {b^2} + {c^2}}} – 1} \right) + {\left( {a – 1} \right)^2} + {\left( {b – 1} \right)^2} + {\left( {c – 1} \right)^2} = {4^{a + b + c}}\). Đặt \(P = \frac{{3a + 2b + c}}{{a + b + c}}\) và gọi \(S\) là tập hợp gồm những giá trị nguyên của \(P\). Số phần tử của tập hợp \(S\) là
Trắc nghiệm Logarit và hàm số lôgarit
Cho \(f\left( x \right) = {2020^x} – {2020^{ – x}}\). Gọi \({m_o}\)là số lớn nhất trong số nguyên \(m\)thỏa mãn \(f\left( {m + 1} \right) + f\left( {\frac{m}{{2020}} – 2020} \right) < 0\).
DẠNG TOÁN PHƯƠNG PHÁP HÀM ĐẶC TRƯNG, BIẾN ĐỔI MŨ, LOGARIT – phát triển theo đề tham khảo Toán 2021 ĐỀ BÀI: Cho \(f\left( x \right) = {2020^x} - {2020^{ - x}}\). Gọi \({m_o}\)là số lớn nhất trong số nguyên \(m\)thỏa mãn \(f\left( {m + 1} \right) + f\left( {\frac{m}{{2020}} - 2020} \right) < 0\). A. \({m_o} = 2018\). B. \({m_o} = … [Đọc thêm...] vềCho \(f\left( x \right) = {2020^x} – {2020^{ – x}}\). Gọi \({m_o}\)là số lớn nhất trong số nguyên \(m\)thỏa mãn \(f\left( {m + 1} \right) + f\left( {\frac{m}{{2020}} – 2020} \right) < 0\).
Cho hai số thực \(x,{\rm{ }}y\) thoả mãn: \(9{x^3} + \left( {2 – y\sqrt {3xy – 5} } \right)x + \sqrt {3xy – 5} = 0\). Tìm giá trị nhỏ nhất của \(P = {x^3} + {y^3} + 6xy + 3\left( {3{x^2} + 1} \right)\left( {x + y – 2} \right)\)
DẠNG TOÁN PHƯƠNG PHÁP HÀM ĐẶC TRƯNG, BIẾN ĐỔI MŨ, LOGARIT – phát triển theo đề tham khảo Toán 2021 ĐỀ BÀI: Cho hai số thực \(x,{\rm{ }}y\) thoả mãn: \(9{x^3} + \left( {2 - y\sqrt {3xy - 5} } \right)x + \sqrt {3xy - 5} = 0\). Tìm giá trị nhỏ nhất của \(P = {x^3} + {y^3} + 6xy + 3\left( {3{x^2} + 1} \right)\left( {x + y - 2} \right)\) A. … [Đọc thêm...] vềCho hai số thực \(x,{\rm{ }}y\) thoả mãn: \(9{x^3} + \left( {2 – y\sqrt {3xy – 5} } \right)x + \sqrt {3xy – 5} = 0\). Tìm giá trị nhỏ nhất của \(P = {x^3} + {y^3} + 6xy + 3\left( {3{x^2} + 1} \right)\left( {x + y – 2} \right)\)
Cho \(x\), \(y\), \(a\), \(b\) là các số thực thỏa mãn \(a > b > 1\) và \({a^{x + 1}} = {b^{2y}} = \frac{a}{b}\). Giá trị nhỏ nhất của biểu thức \(P = {x^2} + {y^2} + y\) là
DẠNG TOÁN PHƯƠNG PHÁP HÀM ĐẶC TRƯNG, BIẾN ĐỔI MŨ, LOGARIT – phát triển theo đề tham khảo Toán 2021 ĐỀ BÀI: Cho \(x\), \(y\), \(a\), \(b\) là các số thực thỏa mãn \(a > b > 1\) và \({a^{x + 1}} = {b^{2y}} = \frac{a}{b}\). Giá trị nhỏ nhất của biểu thức \(P = {x^2} + {y^2} + y\) là A. \( - 2\). B. \( - \frac{{13}}{4}\). C. … [Đọc thêm...] vềCho \(x\), \(y\), \(a\), \(b\) là các số thực thỏa mãn \(a > b > 1\) và \({a^{x + 1}} = {b^{2y}} = \frac{a}{b}\). Giá trị nhỏ nhất của biểu thức \(P = {x^2} + {y^2} + y\) là
Cho \(x,y,z\) là ba số thực khác \(0\)thỏa mãn \({2^x} = {5^y} = {10^{ – z}}.\)Tính \(P = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}.\)
DẠNG TOÁN PHƯƠNG PHÁP HÀM ĐẶC TRƯNG, BIẾN ĐỔI MŨ, LOGARIT – phát triển theo đề tham khảo Toán 2021 ĐỀ BÀI: Cho \(x,y,z\) là ba số thực khác \(0\)thỏa mãn \({2^x} = {5^y} = {10^{ - z}}.\)Tính \(P = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}.\) A. \( - 2.\) B. \(3.\) C. \(0.\) D. \(1.\) LỜI GIẢI CHI TIẾT +) Tự … [Đọc thêm...] vềCho \(x,y,z\) là ba số thực khác \(0\)thỏa mãn \({2^x} = {5^y} = {10^{ – z}}.\)Tính \(P = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}.\)
Cho \(x,\,\,y\) là hai số nguyên không âm thỏa mãn \({\log _2}\left( {x + y} \right) = {\log _3}\left( {x – y} \right).\) Hỏi tổng \(x + y\) là bao nhiêu?
DẠNG TOÁN PHƯƠNG PHÁP HÀM ĐẶC TRƯNG, BIẾN ĐỔI MŨ, LOGARIT – phát triển theo đề tham khảo Toán 2021 ĐỀ BÀI: Cho \(x,\,\,y\) là hai số nguyên không âm thỏa mãn \({\log _2}\left( {x + y} \right) = {\log _3}\left( {x - y} \right).\) Hỏi tổng \(x + y\) là bao nhiêu? A. \(1\). B. \(4\). C. \(3\). D. \(7\). LỜI GIẢI CHI TIẾT … [Đọc thêm...] vềCho \(x,\,\,y\) là hai số nguyên không âm thỏa mãn \({\log _2}\left( {x + y} \right) = {\log _3}\left( {x – y} \right).\) Hỏi tổng \(x + y\) là bao nhiêu?
Xét các số thực \(a\), \(b\) thỏa mãn điều kiện \(\frac{1}{3} < b < a < 1\). Tìm giá trị nhỏ nhất của biểu thức \(P = {\log _a}\left( {\frac{{3b – 1}}{4}} \right) + 12{\log _{\frac{b}{a}}}^2a – 3\)
DẠNG TOÁN PHƯƠNG PHÁP HÀM ĐẶC TRƯNG, BIẾN ĐỔI MŨ, LOGARIT – phát triển theo đề tham khảo Toán 2021 ĐỀ BÀI: Xét các số thực \(a\), \(b\) thỏa mãn điều kiện \(\frac{1}{3} < b < a < 1\). Tìm giá trị nhỏ nhất của biểu thức \(P = {\log _a}\left( {\frac{{3b - 1}}{4}} \right) + 12{\log _{\frac{b}{a}}}^2a - 3\) A. \(\min P = 13\). B. \(\min … [Đọc thêm...] vềXét các số thực \(a\), \(b\) thỏa mãn điều kiện \(\frac{1}{3} < b < a < 1\). Tìm giá trị nhỏ nhất của biểu thức \(P = {\log _a}\left( {\frac{{3b – 1}}{4}} \right) + 12{\log _{\frac{b}{a}}}^2a – 3\)
Cho các số thực dương \(x,y\) thỏa mãn \({\log _{16}}x = {\log _{20}}y = {\log _{25}}\frac{{2x – y}}{3}\). Tính giá trị của biểu thức \(T = \frac{y}{x}\).
DẠNG TOÁN PHƯƠNG PHÁP HÀM ĐẶC TRƯNG, BIẾN ĐỔI MŨ, LOGARIT – phát triển theo đề tham khảo Toán 2021 ĐỀ BÀI: Cho các số thực dương \(x,y\) thỏa mãn \({\log _{16}}x = {\log _{20}}y = {\log _{25}}\frac{{2x - y}}{3}\). Tính giá trị của biểu thức \(T = \frac{y}{x}\). A. \(T = \frac{2}{3}\). B. \(T = \frac{3}{2}\). C. \(T = - … [Đọc thêm...] vềCho các số thực dương \(x,y\) thỏa mãn \({\log _{16}}x = {\log _{20}}y = {\log _{25}}\frac{{2x – y}}{3}\). Tính giá trị của biểu thức \(T = \frac{y}{x}\).
Có bao nhiêu giá trị nguyên \(\left( {x\,;\,y} \right)\) thỏa mãn điều kiện \(0 \le x \le 2020\) và \({3^{x + 1}} + x + 1 = {3^y} + y\)?
DẠNG TOÁN PHƯƠNG PHÁP HÀM ĐẶC TRƯNG, BIẾN ĐỔI MŨ, LOGARIT – phát triển theo đề tham khảo Toán 2021 ĐỀ BÀI: Có bao nhiêu giá trị nguyên \(\left( {x\,;\,y} \right)\) thỏa mãn điều kiện \(0 \le x \le 2020\) và \({3^{x + 1}} + x + 1 = {3^y} + y\)? A. \(2020\). B. \(2021\). C. \(2022\). D. \(2023\). LỜI GIẢI CHI TIẾT - … [Đọc thêm...] vềCó bao nhiêu giá trị nguyên \(\left( {x\,;\,y} \right)\) thỏa mãn điều kiện \(0 \le x \le 2020\) và \({3^{x + 1}} + x + 1 = {3^y} + y\)?
Cho \(0 \le x \le {2021^{2022}}\) và \({\log _2}(2x + 2) + x – 3y = {8^y}\). Có bao nhiêu cặp số \((x\,;y)\) nguyên thỏa mãn các điều kiện trên? A. \(2022\). B. \(10\). C. \(2021\). D. \(7402\).
Cho \(0 \le x \le {2021^{2022}}\) và \({\log _2}(2x + 2) + x - 3y = {8^y}\). Có bao nhiêu cặp số \((x\,;y)\) nguyên thỏa mãn các điều kiện trên? A. \(2022\). B. \(10\). C. \(2021\). D. \(7402\). Lời giải chi tiết PHÁT TRIỂN TƯƠNG TỰ CÂU 47 ĐỀ TOÁN THAM KHẢO 2021 CỦA BỘ. BIÊN SOẠN TỪ STRONG TEAM TOÁN VDC - BIÊN TẬP WEB BOOKTOAN.COM PHƯƠNG PHÁP CHUNG 1. ĐẠO HÀM g'(x) 2. DÙNG … [Đọc thêm...] vềCho \(0 \le x \le {2021^{2022}}\) và \({\log _2}(2x + 2) + x – 3y = {8^y}\). Có bao nhiêu cặp số \((x\,;y)\) nguyên thỏa mãn các điều kiện trên? A. \(2022\). B. \(10\). C. \(2021\). D. \(7402\).
