• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán, Lý, Hóa, Sinh, Anh, Soạn Văn từ lớp 1 đến lớp 12, Học toán và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Môn Lý
  • Môn Hóa
  • Môn Anh
  • Môn Sinh
  • Môn Văn
Bạn đang ở:Trang chủ / Bài tập Hàm số / Đề: Xem hàm số   $y = \frac{{{x^2} – 3x + 4}}{{2x – 2}}$1)    Khảo sát sự biến thiên và vẽ đồ thị của hàm số.2)    $M$ là một điểm tùy ý thuộc đồ thị.Tiếp tuyến của đồ thị tại $M$ cắt tiệm cận đứng và tiệm cận xiên tại $A$ và $B$. Chứng tỏ rằng $M$ là trung điểm của đoạn $AB$, và tam giác $IAB$, với $I$ là giao điểm của hai tiệm cận, có diện tích không phụ thuộc vào $M$.3)    Tìm trên đồ thị hai điểm đối xứng với nhau qua đường thẳng $y = x$

Đề: Xem hàm số   $y = \frac{{{x^2} – 3x + 4}}{{2x – 2}}$1)    Khảo sát sự biến thiên và vẽ đồ thị của hàm số.2)    $M$ là một điểm tùy ý thuộc đồ thị.Tiếp tuyến của đồ thị tại $M$ cắt tiệm cận đứng và tiệm cận xiên tại $A$ và $B$. Chứng tỏ rằng $M$ là trung điểm của đoạn $AB$, và tam giác $IAB$, với $I$ là giao điểm của hai tiệm cận, có diện tích không phụ thuộc vào $M$.3)    Tìm trên đồ thị hai điểm đối xứng với nhau qua đường thẳng $y = x$

Đăng ngày: 08/03/2020 Biên tâp: admin Để lại bình luận Thuộc chủ đề:Bài tập Hàm số

ham so
Đề bài: Xem hàm số   $y = \frac{{{x^2} – 3x + 4}}{{2x – 2}}$1)    Khảo sát sự biến thiên và vẽ đồ thị của hàm số.2)    $M$ là một điểm tùy ý thuộc đồ thị.Tiếp tuyến của đồ thị tại $M$ cắt tiệm cận đứng và tiệm cận xiên tại $A$ và $B$. Chứng tỏ rằng $M$ là trung điểm của đoạn $AB$, và tam giác $IAB$, với $I$ là giao điểm của hai tiệm cận, có diện tích không phụ thuộc vào $M$.3)    Tìm trên đồ thị hai điểm đối xứng với nhau qua đường thẳng $y = x$

Lời giải

$1)$    Dành cho bạn đọc.

$2)$    Kí hiệu ${x_M} = a$ là hoành độ của $M$. Khi đó $M$ có tung độ
${y_M} = \frac{a}{2} – 1 + \frac{1}{{a – 1}}$
và tại $M$ tiếp tuyến có hệ số góc $y’\left( a \right) = 1/2 – 1/{\left( {a – 1} \right)^2}$.
Từ đó ta có phương trình tiếp tuyến tại $M$:  $y = \left[ {\frac{1}{2} – \frac{1}{{{{\left( {a – 1} \right)}^2}}}} \right]\left( {x – a} \right) + \left( {\frac{a}{2} – 1 + \frac{1}{{a – 1}}} \right)$
Tiếp tuyến này cắt tiệm cận đứng tại $A$ với tọa độ ${x_A} = 1$.
${y_A} = \left[ {\frac{1}{2} – \frac{1}{{{{\left( {a – 1} \right)}^2}}}} \right]\left( {1 – a} \right) + \left( {\frac{a}{2} – 1 + \frac{1}{{a – 1}}} \right) =  – \frac{1}{2} + \frac{2}{{a – 1}}$
và cắt tiệm cận xiên tại với tọa độ
${y_B} = \left[ {\frac{1}{2} – \frac{1}{{{{\left( {a – 1} \right)}^2}}}} \right]\left( {{x_B} – a} \right) + \left( {\frac{a}{2} – 1 + \frac{1}{{a – 1}}} \right) = \frac{B}{2} – 1$
$ \Rightarrow \frac{{{x_B} – a}}{{{{\left( {a – 1} \right)}^2}}} = \frac{1}{{a – 1}} \Rightarrow {x_B} = 2a – 1$ , do đó ${y_B} = a – 3/2$.
Ta có $\frac{1}{2}\left( {{x_A} + {x_B}} \right) = \frac{1}{2}\left( {1 + 2a – 1} \right) = a = {x_M},$
$\frac{1}{2}\left( {{y_A} + {y_B}} \right) = \frac{1}{2}\left[ { – \frac{1}{2} + \frac{2}{{a – 1}} + a – \frac{3}{2}} \right] = \frac{a}{2} – 1 + \frac{1}{{a – 1}} = {y_M},$  chứng tỏ $M$ là trung điểm của $AB$.
Giao điểm $I$ của các tiệm cận có tọa độ ${x_1} = 1,{y_1} = \left( {1/2} \right) – 1 =  – 1/2$. Vậy $\Delta IAB$ có diện tích
$S = \frac{1}{2}\left| {{y_A} – {y_1}} \right|.\left| {{x_A} + {x_1}} \right| = \frac{1}{2}.\frac{2}{{a – 1}}.\left| {2a – 2} \right| = 2$

$3)$    Gọi ${x_1},{x_2}$ là hoành độ hai điểm $M, N$ của đồ thị đối xứng với nhau qua đường thẳng $y = x$. Thế thì ${x_2},{x_1}$ là tung độ của hai điểm $M, N$.
Đường thẳng $MN$ vuông góc với đường thẳng $y = x$ nên có hệ số góc $-1$, vậy có phương trình $y = – x + k$. Ta có ${x_2} = – {x_1} + k \Rightarrow k = {x_1} + {x_2}$. $M, N$ thuộc đồ thị nên ${x_1},{x_2}$ là nghiệm của phương trình
$\frac{{{x^2} – 3x + 4}}{{2x – 2}} = – x + k \Leftrightarrow 3{x^2} – \left( {5 + 2k} \right)x + 4 + 2k = 0$.        $(1)$
Theo định lí Viet ta có $k = {x_1} + {x_2} = \left( {5 + 2k} \right)/3 \Rightarrow k = 5$.
Với $k = 5\Rightarrow $ (1) trở thành $3{x^2} – 15x + 14 = 0$. Giải ra ta có  ${x_{1,2}} = \frac{{15 \pm \sqrt {57} }}{6}$

Tag với:Tiếp tuyến của đồ thị

Bài liên quan:

  • Đề: Cho hàm số $y=\frac{x^2-1}{x} $ có đồ thị  $(C)$a) Viết phương trình tiếp tuyến của đồ thị tại giao điểm của đồ thị với trục hoành.b) Gọi $A(x_1, y_1)$ là một điểm trên $(C)$. Chứng minh rằng trên $(C)$ còn có một điểm $B$ khác $A$ mà tiếp tuyến tại $B$  song song với tiếp tuyến tại $A$.
  • Đề:  Cho hàm số: $y = {x^3} – 3x\,\,(1)$$1$. Khảo sát hàm số ($1).$$2$. Chứng minh rằng khi $m$ thay đổi, đường thẳng cho bởi phương trình $y = m(x + 1) + 2$ luôn cắt đồ thị hàm số ($1$) tại một điểm $A$ cố định.Hãy xác định các giá trị của $m$ để đường thẳng cắt đồ thị hàm số ($1$) tại $3$ điểm $A, B, C$ khác nhau sao cho tiếp tuyến với đồ thị tại $B$ và $C$ vuông góc với nhau.
  • Đề: Cho hàm số $y=-\frac{1}{3}x^2-2x^2+3x $ có đồ thị $(C)$. Viết phương trình tiếp tuyến $\Delta $ của $(C)$ tại điểm uốn và chứng minh rằng $\Delta $ là tiếp tuyến cho hệ số góc nhỏ nhất trong tất cả các tiếp tuyến của $(C)$
  • Đề: Cho đường cong $y=x^{3}$. Viết phương trình tiếp tuyến của đường cong biết:a) Tại điểm $(-1;-1)$b) Tại điểm có hoành độ bằng 2c) Biết rằng hệ số góc của tiếp tuyến bằng 3
  • Đề: Cho hàm số $y = x^3 + 3x^2 + mx + 1$ có đồ thị là $(C_m)$. Tìm $m$ để $(C_m)$ cắt đường $y = 1$ tại ba điểm phân biệt $C(0; 1), D, E$ sao cho tiếp tuyến tại $D, E$ vuông góc với nhau.
  • Đề: Cho hàm số:$y = {x^3} – 3x\,\,\,(C)$$1$. Khảo sát sự biến thiên và vẽ đồ thị hàm số.$2$. Viết phương trình các tiếp tuyến kẻ từ điểm $(-1;2)$ tới đồ thị ($C)$
  • Đề: Cho hàm số  $y = \frac{2x – 3}{x – 2}$ .Cho $M$ là điểm bất kì trên $(C)$. Tiếp tuyến của $(C)$ tại $M$ cắt các đường tiệm cận của $(C)$ tại $A$ và  $B$. Gọi $I$  là giao điểm của các đường tiệm cận. Tìm toạ độ điểm $M$ sao cho đường tròn ngoại tiếp tam giác $IAB$ có diện tích nhỏ nhất.
  • Đề: Cho hàm số $y =  – (m^2 + 5m)x^3 + 6mx^2 + 6x – 6$. Gọi $C_m$ là đồ thị của nó. Tìm tất cả các điểm cố định trong mặt phẳng tọa độ mà $C_m$ luôn đi qua với mọi giá trị $m$. Tiếp tuyến của $C_m$ tại mỗi điểm đó có cố định hay không khi $m$ thay đổi, tại sao?
  • Đề: $1.$  Cho hàm số: $y = \frac{1}{3}x^3 – x + \frac{2}{3}     (1)$$a)$ Khảo sát sự biến thiên và vẽ đồ thị hàm số ($1$)$b)$ Tìm trên đồ thị điểm mà tại đó tiếp tuyến của đồ thị vuông góc với đường thẳng $y =  – \frac{1}{3}x + \frac{2}{3}$$2.$ Tính tích phân: $\int\limits_0^1 {{{\left( {1 – x – {x^2}} \right)}^2}dx} $
  • Đề: Cho hàm số $y = \frac{2x – 4}{x + 1}  (C)$. Gọi $M$ là một điểm bất kì trên đồ thị $(C)$, tiếp tuyến tại $M$ cắt các tiệm cận của $(C)$ tại $A, B$. Chứng minh rằng diện tích tam giác $ABI$ ($I$ là giao của hai tiệm cận) không phụ thuộc vào vị trí của $M$.

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Bài tập tự luận về hàm số




Booktoan.com (2015 - 2021) Học Toán online - Giải bài tập môn Toán, Lý, Hóa, Sinh, Anh, Soạn Văn, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.