• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

Đề: Cho hàm số \(y =  – {x^4} + 2m{x^2}\left( {{C_m}} \right)\)$1$. Khảo sát  hàm số \(\left( {{C_m}} \right)\) với \(m = 1\)$2$. Viết phương trình tiếp tuyến của đồ thị hàm số vừa khảo sát tại điểm \(A\left( {\sqrt 2 ,\,0} \right)\)$3$. Hãy xác định m để hàm số \(\left( {{C_m}} \right)\) có ba cực trị.

Đăng ngày: 06/03/2020 Biên tập: admin Thuộc chủ đề:Bài tập Hàm số Tag với:Tiếp tuyến của đồ thị

adsense

ham so
Đề bài: Cho hàm số \(y =  – {x^4} + 2m{x^2}\left( {{C_m}} \right)\)$1$. Khảo sát  hàm số \(\left( {{C_m}} \right)\) với \(m = 1\)$2$. Viết phương trình tiếp tuyến của đồ thị hàm số vừa khảo sát tại điểm \(A\left( {\sqrt 2 ,\,0} \right)\)$3$. Hãy xác định m để hàm số \(\left( {{C_m}} \right)\) có ba cực trị.

Lời giải

$1$. Bạn đọc tự giải.

$2$. Với \(m = 1\), có \(y = f\left( x \right) =  – {x^4} + 2{x^2},\,f’\left( x \right) =  – 4{x^3} + 4x\)
\(f’\left( {\sqrt 2 } \right) =  – 4\sqrt 2 \). Tiếp tuyến tại điểm $A$ \(\left( {\sqrt 2 ,\,0} \right) \in (C)\) có phương trình
\(y =  – 4\sqrt 2 .\left( {x – \sqrt 2 } \right) + 0 \Leftrightarrow y =  – 4\sqrt 2 \left( {x – \sqrt 2 } \right)\)

$3$. \(y’ =  – 4{x^3} + 4mx =  – 4x\left( {{x^2} – m} \right)\)
Nếu \(m \le 0\) thì \({x^2} – m \ge 0,\,\,\forall x \Rightarrow y’\)
luôn cùng dấu với \( – 4x \Rightarrow y’\) đổi dấu đúng một lần.

adsense

Suy ra hàm số có một cực trị duy nhất.

Nếu \(m > 0\) thì $y’ $ có $3$ nghiệm phân biệt \({x_1} =  – \sqrt m ,\,\,{x_2} = 0,\,\,{x_3} = \sqrt m \)

Ta có bảng biến thiên như hình vẽ
Đề: Cho hàm số (y =  - {x^4} + 2m{x^2}left( {{C_m}} right))$1$. Khảo sát  hàm số (left( {{C_m}} right)) với (m = 1)$2$. Viết phương trình tiếp tuyến của đồ thị hàm số vừa khảo sát tại điểm (Aleft( {sqrt 2 ,,0} right))$3$. Hãy xác định m để hàm số (left( {{C_m}} right)) có ba cực trị. 1

Suy ra hàm  số có $3$ cực trị.

Vậy \(\left( {{C_m}} \right)\) có $3$ cực trị \( \Leftrightarrow m > 0\).

Thuộc chủ đề:Bài tập Hàm số Tag với:Tiếp tuyến của đồ thị

Bài liên quan:

  1. Cho hàm số \(y = – {x^3} + 3{x^2} – 7x + 2\). Tiếp tuyến của đồ thị hàm số có hệ số góc lớn nhất có phương trình là

  2. Cho hai hàm số \(y = {x^2}\) (\({C_1}\)) và \(y = \sqrt {5 – {x^2}} – \frac{{41}}{{16}}\) (\({C_2}\)). Phương trình tiếp tuyến chung của hai đồ thị \(\left( {{C_1}} \right),\;\,\left( {{C_2}} \right)\) có hệ số góc dương là

  3. Cho hàm số \(y = \frac{{{x^2} – x – 2}}{{x – 3}}\) có đồ thị \(\left( C \right)\). Có bao nhiêu tiếp tuyến của đồ thị \(\left( C \right)\) đi qua điểm \(A\left( {4\,;\,1} \right)\)?

  4. Cho hàm số \(f(x) = \frac{{x + 1}}{{x – 1}}\) có đồ thị \(\left( H \right)\). Tìm trên \(Oy\)tất cả các điểm từ đó kẻ được duy nhất một tiếp tuyến tới \(\left( H \right)\).

  5. Hỏi có bao nhiêu giá trị của tham số \(m\) để đồ thị hàm số \(y = {x^4} – 2m{x^2} + 3m\) tiếp xúc với trục hoành tại hai điểm phân biệt?

  6. Cho hàm số \(y = \frac{{3x – 1}}{{x – 1}}\) có đồ thị \((C)\). Biết \(y = ax + b\) là phương trình tiếp tuyến của \((C)\) có hệ số góc nhỏ nhất trong các tiếp tuyến có hoành độ tiếp điểm là số nguyên dương. Tính \(2a + b\).

  7. Cho hàm số \(y = {\log _2}\frac{{x + 3}}{{2 – x}}\) có đồ thị \(\left( C \right)\). Phương trình tiếp tuyến đồ thị hàm số tại giao điểm của đồ thị \(\left( C \right)\) với đường thẳng \(d:y = 2\) là:

  8. Xét đồ thị \(\left( C \right)\) của hàm số \(y = {x^3} + 3ax + b\) với \(a,b\) là các số thực. Gọi \(M\), \(N\) là hai điểm phân biệt thuộc \(\left( C \right)\) sao cho tiếp tuyến với \(\left( C \right)\) tại hai điểm đó có hệ số góc bằng \(3\). Biết khoảng cách từ gốc tọa độ tới đường thẳng \(MN\)bằng \(1\). Khi đó giá trị lớn nhất của \({a^2} – {b^2}\) bằng

  9. Cho hàm số \(y = \frac{{2x}}{{x + 1}}\) có đồ thị \(\left( C \right)\). Biết rằng có hai tiếp tuyến của đồ thị \(\left( C \right)\) đi qua điểm \(A\left( {0\,;\,1} \right)\). Tích hệ số góc của hai tiếp tuyến đó bằng
  10. Cho hai hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) đều có đạo hàm trên \(\mathbb{R}\) và thỏa mãn \({f^3}\left( {2 – x} \right) – 2.{f^2}\left( {2 + 3x} \right) + {x^2}.g\left( x \right) + 36x = 0\), \(\forall x \in \mathbb{R}\). Phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại \({x_o} = 2\) là
  11. Số tiếp tuyến chung của hai đồ thị \(\left( {{C_1}} \right):y = \frac{{{x^4}}}{4} – 2{x^2} + 4\)và \(\left( {{C_2}} \right):y = {x^2} + 4\) là

  12. Phương trình tiếp tuyến với đồ thị hàm số \(y = f(x)\) tại điểm có hoành độ \(x = 1,\) biết \({f^2}(1 + 2x) = x – {f^3}(1 – x)\) là đường thẳng nào sau đây?

  13. Cho hàm số \(y = \frac{{x + 1}}{{x – 1}}\) có đồ thị \(\left( C \right)\). Gọi \(S\) là tập hợp tất cả các giá trị thực của tham số \(a\) để có hai tiếp tuyến của \(\left( C \right)\) qua \(A\left( {a\,;\,2} \right)\) với hệ số góc \({k_1}\), \({k_2}\) thỏa mãn \({k_1} + {k_2} + 10k_1^2.k_2^2 = 0\). Tổng các phần tử của \(S\) bằng
  14. Cho hàm số \(y = \frac{{2x – 1}}{{2x – 2}}\) có đồ thị \(\left( C \right)\). Gọi \(M\left( {{x_0};{y_0}} \right)\) (với \({x_0} > 1\)) là điểm thuộc \(\left( C \right)\), biết tiếp tuyến của \(\left( C \right)\) tại \(M\) cắt tiệm cận đứng và tiệm cận ngang lần lượt tại \(A\) và \(B\) sao cho \({S_{\Delta OIB}} = 8{S_{\Delta OIA}}\) (trong đó \(O\) là gốc tọa độ, \(I\) là giao điểm hai tiệm cận). Tính giá trị của \(S = {x_0} + 4{y_0}.\)
  15. Tìm tất cả các giá trị thực của tham số \(m\) để đồ thị hàm số \(y = {{\rm{e}}^x} + m\) tiếp xúc với đồ thị hàm số \(y = \ln \left( {x + 1} \right)\).

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Bài tập tự luận về hàm số




Booktoan.com (2015 - 2023) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.