• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán, Lý, Hóa, Sinh, Anh, Soạn Văn từ lớp 1 đến lớp 12, Học toán và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Môn Lý
  • Môn Hóa
  • Môn Anh
  • Môn Sinh
  • Môn Văn
Bạn đang ở:Trang chủ / Bài tập Hàm số / Đề: Cho hàm số \(y =  – {x^4} + 2m{x^2}\left( {{C_m}} \right)\)$1$. Khảo sát  hàm số \(\left( {{C_m}} \right)\) với \(m = 1\)$2$. Viết phương trình tiếp tuyến của đồ thị hàm số vừa khảo sát tại điểm \(A\left( {\sqrt 2 ,\,0} \right)\)$3$. Hãy xác định m để hàm số \(\left( {{C_m}} \right)\) có ba cực trị.

Đề: Cho hàm số \(y =  – {x^4} + 2m{x^2}\left( {{C_m}} \right)\)$1$. Khảo sát  hàm số \(\left( {{C_m}} \right)\) với \(m = 1\)$2$. Viết phương trình tiếp tuyến của đồ thị hàm số vừa khảo sát tại điểm \(A\left( {\sqrt 2 ,\,0} \right)\)$3$. Hãy xác định m để hàm số \(\left( {{C_m}} \right)\) có ba cực trị.

Đăng ngày: 06/03/2020 Biên tâp: admin Để lại bình luận Thuộc chủ đề:Bài tập Hàm số

ham so
Đề bài: Cho hàm số \(y =  – {x^4} + 2m{x^2}\left( {{C_m}} \right)\)$1$. Khảo sát  hàm số \(\left( {{C_m}} \right)\) với \(m = 1\)$2$. Viết phương trình tiếp tuyến của đồ thị hàm số vừa khảo sát tại điểm \(A\left( {\sqrt 2 ,\,0} \right)\)$3$. Hãy xác định m để hàm số \(\left( {{C_m}} \right)\) có ba cực trị.

Lời giải

$1$. Bạn đọc tự giải.

$2$. Với \(m = 1\), có \(y = f\left( x \right) =  – {x^4} + 2{x^2},\,f’\left( x \right) =  – 4{x^3} + 4x\)
\(f’\left( {\sqrt 2 } \right) =  – 4\sqrt 2 \). Tiếp tuyến tại điểm $A$ \(\left( {\sqrt 2 ,\,0} \right) \in (C)\) có phương trình
\(y =  – 4\sqrt 2 .\left( {x – \sqrt 2 } \right) + 0 \Leftrightarrow y =  – 4\sqrt 2 \left( {x – \sqrt 2 } \right)\)

$3$. \(y’ =  – 4{x^3} + 4mx =  – 4x\left( {{x^2} – m} \right)\)
Nếu \(m \le 0\) thì \({x^2} – m \ge 0,\,\,\forall x \Rightarrow y’\)
luôn cùng dấu với \( – 4x \Rightarrow y’\) đổi dấu đúng một lần.

Suy ra hàm số có một cực trị duy nhất.

Nếu \(m > 0\) thì $y’ $ có $3$ nghiệm phân biệt \({x_1} =  – \sqrt m ,\,\,{x_2} = 0,\,\,{x_3} = \sqrt m \)

Ta có bảng biến thiên như hình vẽ

Suy ra hàm  số có $3$ cực trị.

Vậy \(\left( {{C_m}} \right)\) có $3$ cực trị \( \Leftrightarrow m > 0\).

Tag với:Tiếp tuyến của đồ thị

Bài liên quan:

  • Đề: Cho hàm số $y=\frac{x^2-1}{x} $ có đồ thị  $(C)$a) Viết phương trình tiếp tuyến của đồ thị tại giao điểm của đồ thị với trục hoành.b) Gọi $A(x_1, y_1)$ là một điểm trên $(C)$. Chứng minh rằng trên $(C)$ còn có một điểm $B$ khác $A$ mà tiếp tuyến tại $B$  song song với tiếp tuyến tại $A$.
  • Đề:  Cho hàm số: $y = {x^3} – 3x\,\,(1)$$1$. Khảo sát hàm số ($1).$$2$. Chứng minh rằng khi $m$ thay đổi, đường thẳng cho bởi phương trình $y = m(x + 1) + 2$ luôn cắt đồ thị hàm số ($1$) tại một điểm $A$ cố định.Hãy xác định các giá trị của $m$ để đường thẳng cắt đồ thị hàm số ($1$) tại $3$ điểm $A, B, C$ khác nhau sao cho tiếp tuyến với đồ thị tại $B$ và $C$ vuông góc với nhau.
  • Đề: Cho hàm số $y=-\frac{1}{3}x^2-2x^2+3x $ có đồ thị $(C)$. Viết phương trình tiếp tuyến $\Delta $ của $(C)$ tại điểm uốn và chứng minh rằng $\Delta $ là tiếp tuyến cho hệ số góc nhỏ nhất trong tất cả các tiếp tuyến của $(C)$
  • Đề: Cho đường cong $y=x^{3}$. Viết phương trình tiếp tuyến của đường cong biết:a) Tại điểm $(-1;-1)$b) Tại điểm có hoành độ bằng 2c) Biết rằng hệ số góc của tiếp tuyến bằng 3
  • Đề: Cho hàm số $y = x^3 + 3x^2 + mx + 1$ có đồ thị là $(C_m)$. Tìm $m$ để $(C_m)$ cắt đường $y = 1$ tại ba điểm phân biệt $C(0; 1), D, E$ sao cho tiếp tuyến tại $D, E$ vuông góc với nhau.
  • Đề: Cho hàm số:$y = {x^3} – 3x\,\,\,(C)$$1$. Khảo sát sự biến thiên và vẽ đồ thị hàm số.$2$. Viết phương trình các tiếp tuyến kẻ từ điểm $(-1;2)$ tới đồ thị ($C)$
  • Đề: Cho hàm số  $y = \frac{2x – 3}{x – 2}$ .Cho $M$ là điểm bất kì trên $(C)$. Tiếp tuyến của $(C)$ tại $M$ cắt các đường tiệm cận của $(C)$ tại $A$ và  $B$. Gọi $I$  là giao điểm của các đường tiệm cận. Tìm toạ độ điểm $M$ sao cho đường tròn ngoại tiếp tam giác $IAB$ có diện tích nhỏ nhất.
  • Đề: Cho hàm số $y =  – (m^2 + 5m)x^3 + 6mx^2 + 6x – 6$. Gọi $C_m$ là đồ thị của nó. Tìm tất cả các điểm cố định trong mặt phẳng tọa độ mà $C_m$ luôn đi qua với mọi giá trị $m$. Tiếp tuyến của $C_m$ tại mỗi điểm đó có cố định hay không khi $m$ thay đổi, tại sao?
  • Đề: $1.$  Cho hàm số: $y = \frac{1}{3}x^3 – x + \frac{2}{3}     (1)$$a)$ Khảo sát sự biến thiên và vẽ đồ thị hàm số ($1$)$b)$ Tìm trên đồ thị điểm mà tại đó tiếp tuyến của đồ thị vuông góc với đường thẳng $y =  – \frac{1}{3}x + \frac{2}{3}$$2.$ Tính tích phân: $\int\limits_0^1 {{{\left( {1 – x – {x^2}} \right)}^2}dx} $
  • Đề: Cho hàm số $y = \frac{2x – 4}{x + 1}  (C)$. Gọi $M$ là một điểm bất kì trên đồ thị $(C)$, tiếp tuyến tại $M$ cắt các tiệm cận của $(C)$ tại $A, B$. Chứng minh rằng diện tích tam giác $ABI$ ($I$ là giao của hai tiệm cận) không phụ thuộc vào vị trí của $M$.
  • Đề: Cho hàm số $y=\frac{3x+1}{x+1} $. Tính diện tích của tam giác tạo bởi các trục tọa độ và tiếp tuyến với đồ thị hàm số tại điểm $M(-2;5)$
  • Đề: Cho đồ thị $(C)$ của hàm số $y = \frac{2x – 1}{x – 1}$. Viết phương trình tiếp tuyến của $(C)$, biết khoảng cách từ điểm $I(1;2)$ đến tiếp tuyến bằng $ \sqrt {2} $

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Bài tập tự luận về hàm số




Booktoan.com (2015 - 2021) Học Toán online - Giải bài tập môn Toán, Lý, Hóa, Sinh, Anh, Soạn Văn, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.