Đề bài: Chứng minh các bất đẳng thức:a) $(a+b)^4 \leq 8(a^4+b^4) $ b) $a^2(1+b^2)+b^2(1+c^2)+c^2(1+a^2) > 6abc.$ Lời giải Đề bài: Chứng minh các bất đẳng thức:a) $(a+b)^4 \leq 8(a^4+b^4) $ b) $a^2(1+b^2)+b^2(1+c^2)+c^2(1+a^2) > 6abc.$ Lời giải a) Xét $(a+b)^2=(1.a+1.b)^2$Theo … [Đọc thêm...] vềĐề bài: Chứng minh các bất đẳng thức:a) $(a+b)^4 \leq 8(a^4+b^4) $ b) $a^2(1+b^2)+b^2(1+c^2)+c^2(1+a^2) > 6abc.$
Bất đẳng thức - Bài tập tự luận
Đề bài: Cho ba số thực $a,b,c$ thỏa mãn $a(a-1)+b(b-1)+c(c-1)\leq \frac{4}{3}$.Chứng minh rằng $a+b+c\leq 4$
Đề bài: Cho ba số thực $a,b,c$ thỏa mãn $a(a-1)+b(b-1)+c(c-1)\leq \frac{4}{3}$.Chứng minh rằng $a+b+c\leq 4$ Lời giải Đề bài: Cho ba số thực $a,b,c$ thỏa mãn $a(a-1)+b(b-1)+c(c-1)\leq \frac{4}{3}$.Chứng minh rằng $a+b+c\leq 4$ Lời giải Ta có biến đổi $ \displaystyle \frac{4}{3}\geq … [Đọc thêm...] vềĐề bài: Cho ba số thực $a,b,c$ thỏa mãn $a(a-1)+b(b-1)+c(c-1)\leq \frac{4}{3}$.Chứng minh rằng $a+b+c\leq 4$
Đề bài: Cho $x,y \geq 0$ và $x+y=1$. Tìm giá trị lớn nhất và nhỏ nhất của biểu thức : $P=3^{2x}+3^y$.
Đề bài: Cho $x,y \geq 0$ và $x+y=1$. Tìm giá trị lớn nhất và nhỏ nhất của biểu thức : $P=3^{2x}+3^y$. Lời giải Đề bài: Cho $x,y \geq 0$ và $x+y=1$. Tìm giá trị lớn nhất và nhỏ nhất của biểu thức : $P=3^{2x}+3^y$. Lời giải Ta có: $y=1-x$, từ đó … [Đọc thêm...] vềĐề bài: Cho $x,y \geq 0$ và $x+y=1$. Tìm giá trị lớn nhất và nhỏ nhất của biểu thức : $P=3^{2x}+3^y$.
Đề bài: Cho $\begin{cases}0
Đề bài: Cho $\begin{cases}0 Lời giải Đề bài: Cho $\begin{cases}0 Lời giải $f(x)=x^{2}-(a+c)x+ac=0$ có $2$ nghiệm $a,c$Mà: $a \leq b\leq c \Rightarrow f(b) \leq 0$$\Leftrightarrow b^{2}-(a+c)b+ac\leq 0$$\Leftrightarrow b+\frac{ac}{b} \leq a+c$$\Leftrightarrow yb+ac\frac{y}{b} \leq … [Đọc thêm...] vềĐề bài: Cho $\begin{cases}0
Đề bài: Cho $\begin{cases}0
Đề bài: Cho $\begin{cases}0 Lời giải Đề bài: Cho $\begin{cases}0 Lời giải $f(x)=x^{2}-(a+c)x+ac=0$ có $2$ nghiệm $a,c$Mà: $a \leq b\leq c \Rightarrow f(b) \leq 0$$\Leftrightarrow b^{2}-(a+c)b+ac\leq 0$$\Leftrightarrow b+\frac{ac}{b} \leq a+c$$\Leftrightarrow yb+ac\frac{y}{b} \leq … [Đọc thêm...] vềĐề bài: Cho $\begin{cases}0
Đề bài: Cho : $y = \sqrt {a\cos^2 {x} + b\sin^2 {x} + c} + \sqrt {a\sin^2 {x} + b\cos^2 {x} + c} + m\sin x\cos x$a) Tìm điều kiện của $a, b, c$ để $y$ có nghĩa với $\forall x$.b) Với điều kiện ấy hãy tìm $max \,y$, biện luận theo $m$
Đề bài: Cho : $y = \sqrt {a\cos^2 {x} + b\sin^2 {x} + c} + \sqrt {a\sin^2 {x} + b\cos^2 {x} + c} + m\sin x\cos x$a) Tìm điều kiện của $a, b, c$ để $y$ có nghĩa với $\forall x$.b) Với điều kiện ấy hãy tìm $max \,y$, biện luận theo $m$ Lời giải Đề bài: Cho : $y = \sqrt {a\cos^2 {x} + b\sin^2 {x} + c} + \sqrt {a\sin^2 {x} + b\cos^2 {x} + c} + … [Đọc thêm...] vềĐề bài: Cho : $y = \sqrt {a\cos^2 {x} + b\sin^2 {x} + c} + \sqrt {a\sin^2 {x} + b\cos^2 {x} + c} + m\sin x\cos x$a) Tìm điều kiện của $a, b, c$ để $y$ có nghĩa với $\forall x$.b) Với điều kiện ấy hãy tìm $max \,y$, biện luận theo $m$
Đề bài: Chứng minh rằng:$-\frac{1}{4}\leq \frac{(a^{2}-b^{2})(1-a^{2}b^{2})}{[(1+a^{2})(1+b^{2})]^{2}}\leq \frac{1}{4}$
Đề bài: Chứng minh rằng:$-\frac{1}{4}\leq \frac{(a^{2}-b^{2})(1-a^{2}b^{2})}{[(1+a^{2})(1+b^{2})]^{2}}\leq \frac{1}{4}$ Lời giải Đề bài: Chứng minh rằng:$-\frac{1}{4}\leq \frac{(a^{2}-b^{2})(1-a^{2}b^{2})}{[(1+a^{2})(1+b^{2})]^{2}}\leq \frac{1}{4}$ Lời giải Đặt:$\begin{cases}a=\tan \alpha \\ … [Đọc thêm...] vềĐề bài: Chứng minh rằng:$-\frac{1}{4}\leq \frac{(a^{2}-b^{2})(1-a^{2}b^{2})}{[(1+a^{2})(1+b^{2})]^{2}}\leq \frac{1}{4}$
Đề bài: Chứng minh rằng:$\sqrt[n]{2}\leq \sqrt[n]{1-x}+ \sqrt[n]{1+x}, \forall |x| \leq 1,n \in Z,n\geq 2$
Đề bài: Chứng minh rằng:$\sqrt[n]{2}\leq \sqrt[n]{1-x}+ \sqrt[n]{1+x}, \forall |x| \leq 1,n \in Z,n\geq 2$ Lời giải Đề bài: Chứng minh rằng:$\sqrt[n]{2}\leq \sqrt[n]{1-x}+ \sqrt[n]{1+x}, \forall |x| \leq 1,n \in Z,n\geq 2$ Lời giải $|x|\leq 1 \Rightarrow$ Đặt: $x=\cos … [Đọc thêm...] vềĐề bài: Chứng minh rằng:$\sqrt[n]{2}\leq \sqrt[n]{1-x}+ \sqrt[n]{1+x}, \forall |x| \leq 1,n \in Z,n\geq 2$
Đề bài: Chứng minh rằng: $\sqrt{1+\sqrt{1-x^{2}}} \geq \frac{x}{\sqrt{2}}.(1+2\sqrt{1-x^{2}}),\forall x \in [-1,1]$
Đề bài: Chứng minh rằng: $\sqrt{1+\sqrt{1-x^{2}}} \geq \frac{x}{\sqrt{2}}.(1+2\sqrt{1-x^{2}}),\forall x \in [-1,1]$ Lời giải Đề bài: Chứng minh rằng: $\sqrt{1+\sqrt{1-x^{2}}} \geq \frac{x}{\sqrt{2}}.(1+2\sqrt{1-x^{2}}),\forall x \in [-1,1]$ Lời giải Đặt: $x=\sin 2\alpha,\alpha \in … [Đọc thêm...] vềĐề bài: Chứng minh rằng: $\sqrt{1+\sqrt{1-x^{2}}} \geq \frac{x}{\sqrt{2}}.(1+2\sqrt{1-x^{2}}),\forall x \in [-1,1]$
Đề bài: Cho $n \in Z,n \geq 1,a,b \geq 0$.Hãy chứng minh: $\frac{a^{n}+b^{n}}{2} \geq (\frac{a+b}{2})^{n}$Hãy tổng quát hóa bài toán trên.
Đề bài: Cho $n \in Z,n \geq 1,a,b \geq 0$.Hãy chứng minh: $\frac{a^{n}+b^{n}}{2} \geq (\frac{a+b}{2})^{n}$Hãy tổng quát hóa bài toán trên. Lời giải Đề bài: Cho $n \in Z,n \geq 1,a,b \geq 0$.Hãy chứng minh: $\frac{a^{n}+b^{n}}{2} \geq (\frac{a+b}{2})^{n}$Hãy tổng quát hóa bài toán trên. Lời giải … [Đọc thêm...] vềĐề bài: Cho $n \in Z,n \geq 1,a,b \geq 0$.Hãy chứng minh: $\frac{a^{n}+b^{n}}{2} \geq (\frac{a+b}{2})^{n}$Hãy tổng quát hóa bài toán trên.
