• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Quốc gia Môn Toán
  • Trắc nghiệm toán 12
  • Máy tính

Đề bài: Cho :  $y  =  \sqrt {a\cos^2 {x} + b\sin^2 {x} + c}  + \sqrt {a\sin^2 {x} + b\cos^2 {x} + c}  + m\sin x\cos x$a)    Tìm điều kiện của $a, b, c$ để $y$ có nghĩa với $\forall x$.b)    Với điều kiện ấy hãy tìm $max \,y$, biện luận theo $m$

Đăng ngày: 11/07/2021 Biên tập: admin Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Cho :  $y  =  \sqrt {a\cos^2 {x} + b\sin^2 {x} + c}  + \sqrt {a\sin^2 {x} + b\cos^2 {x} + c}  + m\sin x\cos x$a)    Tìm điều kiện của $a, b, c$ để $y$ có nghĩa với $\forall x$.b)    Với điều kiện ấy hãy tìm $max \,y$, biện luận theo $m$

Bat dang thuc

Lời giải

Đề bài:
Cho :  $y  =  \sqrt {a\cos^2 {x} + b\sin^2 {x} + c}  + \sqrt {a\sin^2 {x} + b\cos^2 {x} + c}  + m\sin x\cos x$a)    Tìm điều kiện của $a, b, c$ để $y$ có nghĩa với $\forall x$.b)    Với điều kiện ấy hãy tìm $max \,y$, biện luận theo $m$
Lời giải

a) Để có ý nghĩa với $\forall x$, hệ sau phải thỏa mãn với $\forall x$
$\left\{ \begin{array}{l}
f(x) = a{\cos ^2}x + b{\sin ^2}x + c \ge 0     (3)\\
\varphi (x) = a{\sin ^2}x + b{\cos ^2}x + c \ge 0    (4)
\end{array} \right.$
Chú ý rằng $f\left( {\frac{\pi }{2} – x} \right) = \varphi (x)$ nên chỉ cần $(3)$ đúng với $\forall x$ là $(4)$ cũng đúng với $\forall x$.
Muốn $(3)$ đúng với $\forall x$ $ \Leftrightarrow \min f(x) \ge 0$
Ta có         $f(x) = (a – b)c{\rm{o}}{{\rm{s}}^{\rm{2}}}x + b + c$ nên:
•    Nếu $a \ge b \Rightarrow \min f(x) = b + c$
•    Nếu $a Vậy để y có nghĩa với $\forall x$:
•    Nếu $a \ge b$: phải có điều kiện $b + c \ge 0$
•    Nếu $a
b)    Biểu thức của y gồm hai phần: $y = z + v$ trong đó:
$z = \sqrt {a{{\cos }^2}x + b{{\sin }^2}x + c}  + \sqrt {a{{\sin }^2}x + b{{\cos }^2}x + c} $
Và         $v = m\sin x\cos x = \frac{m}{2}\sin 2x$                $(5)$
Do $z \ge 0$ nên để xét max của z ta xét ${z^2}$: u = ${z^2}$=
    $ = a + b + 2c + 2\sqrt {{{\left( {\sqrt {\frac{{a + b + 2c}}{2}} } \right)}^2} – {{\left( {\frac{{a – b}}{2}} \right)}^2}c{\rm{o}}{{\rm{s}}^{\rm{2}}}2x} $        $(6)$
•    Nếu $m \ge 0$ thì từ $(5)$ $\max v$ đạt được khi $\sin 2x = 1$, khi đó $c{\rm{os2x  =  0}}$ thì từ $(6)$ suy ra $u = {z^2}$ cũng đạt được max, do đó $y = z + v$ cũng đạt được max. Vậy trường hợp $m \ge 0$ ta được: (thay $\sin 2x = 1$vào (5) và $c{\rm{os2x  =  0}}$ vào (6) )
$m{\rm{axy  =  }}\frac{{\rm{m}}}{{\rm{2}}} + \sqrt {a + b + 2c + \left| {a + b + 2c} \right|} $
•    Nếu $m $m{\rm{ax y  = – }}\frac{{\rm{m}}}{{\rm{2}}} + \sqrt {a + b + 2c + \left| {a + b + 2c} \right|} $

=========
Chuyên mục: Các dạng bất đẳng thức khác

Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Bài liên quan:

  1. Đề bài: Cho $n$ số thực không âm $x_1, x_2, …, x_n$ thỏa mãn điều kiện: $x_1+x_2+…+x_n\leq  \frac{1}{2} $Chứng minh rằng : $(1-x_1)(1-x_2)…(1-x_n)\geq  \frac{1}{2} $
  2. Đề bài: Chứng minh bất đẳng thức:Nếu $a+b \geq  2$ thì $\frac{a^{n}+b^{n}}{2}\leq  \frac{a+b}{2}\frac{a^{n}+b^{n}}{2}\leq \frac{a^{n+1}+b^{n+1}}{2}  $
  3. Đề bài: Chứng minh rằng: $-(1+x^{2})^{n}\leq (1-x^{2})^{n}+(2x)^{n}\leq (1+x^{2})^{n},\forall x \in R,\forall n\in N$\$\left\{ \begin{array}{l}0,1 \end{array} \right.\left. \right \}$
  4. Đề bài: Cho $|x|\leq 1,n\in Z,n \geq 2$.Chứng minh rằng:$(1+x)^{n}+(1-x)^{n}\leq 2^{n}$
  5. Đề bài: Chứng minh rằng:$n^{n} > (n+1) ^{n-1} .\forall n \in Z,n \geq 2$
  6. Đề bài: Tìm tất cả các giá trị thực của $x$ sao cho bất đẳng thức sau đúng với mọi số không âm $a,b,c$$[a^2+b^2+(x-1)c^2]\times [a^2+c^2+(x-1)b^2]\times [b^2+c^2+(x-1)a^2]$ $\leq (a^2+bcx)(b^2+acx)(c^2+abx)   (1)$
  7. Đề bài: $a/$Cho $\begin{cases}x+y\geq 2 \\ x,y\geq 0 \\n\in N^{*}\end{cases}$Chứng minh: $x^{n+1}+y^{n+1}\geq x^{n}+y^{n}$$b/$Cho $\begin{cases} \\a,b> 0 \\n\in N^{*}\end{cases}$Chứng minh: $\frac{a^{n}+b^{n}}{2}\geq \left ( \frac{a+b}{2} \right )^{n}$
  8. Đề bài: Cho $ x_1,x_2, … , x_{2008} \in [\frac{\pi}{6};\frac{\pi}{2}]$. Tìm giá trị lớn nhất của: $y=(\sin x_1+\sin x_2+ … +\sin x_{2008}).\left ( \frac{1}{\sin x_1} + \frac{1}{\sin x_2}+…+ \frac{1}{\sin x_{2008}}\right )$
  9. Đề bài: Chứng minh rằng:$-\frac{1}{4}\leq \frac{(a^{2}-b^{2})(1-a^{2}b^{2})}{[(1+a^{2})(1+b^{2})]^{2}}\leq \frac{1}{4}$
  10. Đề bài: Chứng minh rằng:$\sqrt[n]{2}\leq \sqrt[n]{1-x}+ \sqrt[n]{1+x},  \forall |x| \leq 1,n \in Z,n\geq 2$
  11. Đề bài: Chứng minh rằng: $\sqrt{1+\sqrt{1-x^{2}}} \geq \frac{x}{\sqrt{2}}.(1+2\sqrt{1-x^{2}}),\forall x \in [-1,1]$
  12. Đề bài: Cho $n \in Z,n \geq 1,a,b \geq 0$.Hãy chứng minh: $\frac{a^{n}+b^{n}}{2} \geq (\frac{a+b}{2})^{n}$Hãy tổng quát hóa bài toán trên.
  13. Đề bài: Chứng minh rằng trong $3$ bất đẳng thức sau đây ít nhất có $1$ bất đẳng thức đúng:$2(a^{2}+b^{2})\geq(b+c)^{2};2(b^{2}+c^{2})\geq(c+a)^{2};2(c^{2}+a^{2})\geq(a+b^{2})$
  14. Đề bài: Cho $a,b,c >0, a+b=c$.Chứng minh rằng:$\sqrt[4]{a^{3}}+\sqrt[4]{b^{3}}>\sqrt[4]{c^{3}}$
  15. Đề bài: Chứng minh bất dẳng thức:a) $\sin ^{4}x+\cos ^{8}x\leq  1                                               b) \sin^{10}x+\cos^{11}x \leq \ 1$ c)$(1+x)^{n}+(1-x)^{n} \leq  2^{n}; (|x|\leq  1), n \geq   1$

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2022) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.