Đề bài: Chứng minh rằng với $a$ là số thực không âm thì: $\sqrt{a}+\sqrt[3]{a}+\sqrt[6]{a}\leq a+2 (1)$ Lời giải Đề bài: Chứng minh rằng với $a$ là số thực không âm thì: $\sqrt{a}+\sqrt[3]{a}+\sqrt[6]{a}\leq a+2 (1)$ Lời giải Đặt $u=\sqrt[6]{6}, u\geq 0.$Từ đó ta … [Đọc thêm...] vềĐề bài: Chứng minh rằng với $a$ là số thực không âm thì: $\sqrt{a}+\sqrt[3]{a}+\sqrt[6]{a}\leq a+2 (1)$
Bất đẳng thức - Bài tập tự luận
Đề bài: Cho $0\leq a,b,c,d\leq 1$.Chứng minh rằng:$\frac{a}{bcd+1}+\frac{b}{cda+1}+\frac{c}{dab+1}+\frac{d}{abc+1}\leq 3$
Đề bài: Cho $0\leq a,b,c,d\leq 1$.Chứng minh rằng:$\frac{a}{bcd+1}+\frac{b}{cda+1}+\frac{c}{dab+1}+\frac{d}{abc+1}\leq 3$ Lời giải Đề bài: Cho $0\leq a,b,c,d\leq 1$.Chứng minh rằng:$\frac{a}{bcd+1}+\frac{b}{cda+1}+\frac{c}{dab+1}+\frac{d}{abc+1}\leq 3$ Lời giải Ta có: $\left ( 1-a \right )\left … [Đọc thêm...] vềĐề bài: Cho $0\leq a,b,c,d\leq 1$.Chứng minh rằng:$\frac{a}{bcd+1}+\frac{b}{cda+1}+\frac{c}{dab+1}+\frac{d}{abc+1}\leq 3$
Đề bài: Cho tam giác $ABC$. Chứng minh rằng : $\frac{{m_a.m_b.m_c}}{{m_a^2 + m_b^2 + m_c^2}} \ge r$
Đề bài: Cho tam giác $ABC$. Chứng minh rằng : $\frac{{m_a.m_b.m_c}}{{m_a^2 + m_b^2 + m_c^2}} \ge r$ Lời giải Đề bài: Cho tam giác $ABC$. Chứng minh rằng : $\frac{{m_a.m_b.m_c}}{{m_a^2 + m_b^2 + m_c^2}} \ge r$ Lời giải Đặt ${S_m}$ là diện tích tam giác với ba cạnh là ${m_a},{m_b},{m_c}$. Ta có: … [Đọc thêm...] vềĐề bài: Cho tam giác $ABC$. Chứng minh rằng : $\frac{{m_a.m_b.m_c}}{{m_a^2 + m_b^2 + m_c^2}} \ge r$
Đề bài: Cho tam giác $ABC$ thỏa mãn: $sinA+sinC=3sinB$ CMR ${\sin ^2}\frac{A}{2} + {\sin ^2}\frac{C}{2} \ge \frac{2}{3}$
Đề bài: Cho tam giác $ABC$ thỏa mãn: $sinA+sinC=3sinB$ CMR ${\sin ^2}\frac{A}{2} + {\sin ^2}\frac{C}{2} \ge \frac{2}{3}$ Lời giải Đề bài: Cho tam giác $ABC$ thỏa mãn: $sinA+sinC=3sinB$ CMR ${\sin ^2}\frac{A}{2} + {\sin ^2}\frac{C}{2} \ge \frac{2}{3}$ Lời giải Từ giả thiết … [Đọc thêm...] vềĐề bài: Cho tam giác $ABC$ thỏa mãn: $sinA+sinC=3sinB$ CMR ${\sin ^2}\frac{A}{2} + {\sin ^2}\frac{C}{2} \ge \frac{2}{3}$
Đề bài: Chứng minh rằng $2\sin x+\tan x > 3x$ với mọi $x\in(0;\frac{\pi}{2})$.
Đề bài: Chứng minh rằng $2\sin x+\tan x > 3x$ với mọi $x\in(0;\frac{\pi}{2})$. Lời giải Đề bài: Chứng minh rằng $2\sin x+\tan x > 3x$ với mọi $x\in(0;\frac{\pi}{2})$. Lời giải Xét hàm số $f(x) =2\sin x+\tan x-3x$ trên $D=[0;\frac{\pi}{2})$, ta có : $f^'(x) = 2\cos … [Đọc thêm...] vềĐề bài: Chứng minh rằng $2\sin x+\tan x > 3x$ với mọi $x\in(0;\frac{\pi}{2})$.
Đề bài: Cho 2 số $a$ và $b$ thỏa điều kiện $ab > 1$. Chứng minh rằng: $ \frac{1}{1 + a^2 }+ \frac{1}{1 + b^2} \ge \frac{2}{1 + ab} $
Đề bài: Cho 2 số $a$ và $b$ thỏa điều kiện $ab > 1$. Chứng minh rằng: $ \frac{1}{1 + a^2 }+ \frac{1}{1 + b^2} \ge \frac{2}{1 + ab} $ Lời giải Ta có: $ \begin{array}{l}\frac{1}{{1 + {a^2}}} + \frac{1}{{1 + {b^2}}} - \frac{2}{{1 + ab}} = \left( {\frac{1}{{1 + {a^2}}} - \frac{1}{{1 + ab}}} \right) + \left( {\frac{1}{{1 + {b^2}}} + \frac{1}{{1 + ab}}} \right)\\= … [Đọc thêm...] vềĐề bài: Cho 2 số $a$ và $b$ thỏa điều kiện $ab > 1$. Chứng minh rằng: $ \frac{1}{1 + a^2 }+ \frac{1}{1 + b^2} \ge \frac{2}{1 + ab} $
Đề bài: Chứng minh rằng với \(a\geq b\geq 1: \frac{1}{1+a^{2}}+\frac{1}{1+b^{2}}\geq \frac{2}{1+ab}\) (1)
Đề bài: Chứng minh rằng với \(a\geq b\geq 1: \frac{1}{1+a^{2}}+\frac{1}{1+b^{2}}\geq \frac{2}{1+ab}\) (1) Lời giải Ta có: (1) \(\Leftrightarrow \frac{1}{1+a^{2}}-\frac{1}{1+ab}+\frac{1}{1+b^{2}}-\frac{1}{1+ab}\geq 0\)\(\Leftrightarrow \frac{ab-a^{2}}{(1+a^{2})(1+ab)}+\frac{ab-b^{2}}{(1+b^{2})(1+ab)}\geq 0\)\(\Leftrightarrow … [Đọc thêm...] vềĐề bài: Chứng minh rằng với \(a\geq b\geq 1: \frac{1}{1+a^{2}}+\frac{1}{1+b^{2}}\geq \frac{2}{1+ab}\) (1)
Đề bài: Cho $a+b=2$.Hãy chứng minh:$1/ a^{2}+ b^{2} \geq 2$ $2/ a^{4}+ b^{4} \geq 2$
Đề bài: Cho $a+b=2$.Hãy chứng minh:$1/ a^{2}+ b^{2} \geq 2$ $2/ a^{4}+ b^{4} \geq 2$ Lời giải Đặt: $\begin{cases}a=1+x \\ b=1+y \end{cases}\Rightarrow x+y=0$$1/$Lúc đó: $a^{2}+ b^{2} = \left ( 1+x \right )^{2}+ \left ( 1+y \right )^{2} $ $=1+2x+ x^{2}+ 1+2y+ y^{2} =2+2 \left ( x+y \right )+ x^{2}+ y^{2} $ … [Đọc thêm...] vềĐề bài: Cho $a+b=2$.Hãy chứng minh:$1/ a^{2}+ b^{2} \geq 2$ $2/ a^{4}+ b^{4} \geq 2$
Đề bài: Cho ba số dương $x,y,z$ và $xyz=1$.Chứng minh $\frac{x^2}{x+y+y^3z}+\frac{y^2}{y+z+z^3x}+\frac{z^2}{z+x+x^3y}\geq 1$.
Đề bài: Cho ba số dương $x,y,z$ và $xyz=1$.Chứng minh $\frac{x^2}{x+y+y^3z}+\frac{y^2}{y+z+z^3x}+\frac{z^2}{z+x+x^3y}\geq 1$. Lời giải Đề bài: Cho ba số dương $x,y,z$ và $xyz=1$.Chứng minh $\frac{x^2}{x+y+y^3z}+\frac{y^2}{y+z+z^3x}+\frac{z^2}{z+x+x^3y}\geq 1$. Lời giải Cần lời giải chi … [Đọc thêm...] vềĐề bài: Cho ba số dương $x,y,z$ và $xyz=1$.Chứng minh $\frac{x^2}{x+y+y^3z}+\frac{y^2}{y+z+z^3x}+\frac{z^2}{z+x+x^3y}\geq 1$.
Đề bài: Cho \(a,b>0\). Chứng minh rằng: \(\frac{a}{a^{2}+b^{2}}+\frac{b}{b^{2}+c^{2}}+\frac{c}{a^{2}+c^{2}}\leq \frac{1}{2}(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})\)
Đề bài: Cho \(a,b>0\). Chứng minh rằng: \(\frac{a}{a^{2}+b^{2}}+\frac{b}{b^{2}+c^{2}}+\frac{c}{a^{2}+c^{2}}\leq \frac{1}{2}(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})\) Lời giải Đề bài: Cho \(a,b>0\). Chứng minh rằng: \(\frac{a}{a^{2}+b^{2}}+\frac{b}{b^{2}+c^{2}}+\frac{c}{a^{2}+c^{2}}\leq \frac{1}{2}(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})\) Lời giải … [Đọc thêm...] vềĐề bài: Cho \(a,b>0\). Chứng minh rằng: \(\frac{a}{a^{2}+b^{2}}+\frac{b}{b^{2}+c^{2}}+\frac{c}{a^{2}+c^{2}}\leq \frac{1}{2}(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})\)