• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Trong không gian \(Oxyz\), cho các véc tơ \(\overrightarrow a = 2\overrightarrow j + \overrightarrow i ,\;\overrightarrow b = – \overrightarrow i + 2\overrightarrow k – 2\overrightarrow j \) và \(\overrightarrow c = 2\overrightarrow i – 3\overrightarrow k \). Khẳng định nào sau đây đúng?

Ngày 19/03/2022 Thuộc chủ đề:Trắc nghiệm Hình học OXYZ Tag với:Trac nghiem hinh hoc OXYZ hệ tọa độ

Câu hỏi: Trong không gian \(Oxyz\), cho các véc tơ \(\overrightarrow a = 2\overrightarrow j + \overrightarrow i ,\;\overrightarrow b = - \overrightarrow i + 2\overrightarrow k - 2\overrightarrow j \) và \(\overrightarrow c = 2\overrightarrow i - 3\overrightarrow k \). Khẳng định nào sau đây đúng? A. \(\overrightarrow a = \left( {2;1;0} \right),\;\overrightarrow b = … [Đọc thêm...] về

Trong không gian \(Oxyz\), cho các véc tơ \(\overrightarrow a = 2\overrightarrow j + \overrightarrow i ,\;\overrightarrow b = – \overrightarrow i + 2\overrightarrow k – 2\overrightarrow j \) và \(\overrightarrow c = 2\overrightarrow i – 3\overrightarrow k \). Khẳng định nào sau đây đúng?

Cho mặt cầu \(\left( S \right)\):\({x^2} + {y^2} + {z^2} – 4x + 2y – 2z – 3 = 0\) và điểm \(A\left( {5;3;1} \right)\). Một đường thẳng \(d\) thay đổi luôn đi qua \(A\) và cắt mặt cầu tại hai điểm phân biệt \(M,N\), (\(M\)nằm giữa \(A\)và \(N\)). Tính giá trị nhỏ nhất của \(S = 8AM + AN\).

Ngày 19/03/2022 Thuộc chủ đề:Trắc nghiệm Hình học OXYZ Tag với:Trac nghiem mat cau

Câu hỏi: Cho mặt cầu \(\left( S \right)\):\({x^2} + {y^2} + {z^2} - 4x + 2y - 2z - 3 = 0\) và điểm \(A\left( {5;3;1} \right)\). Một đường thẳng \(d\) thay đổi luôn đi qua \(A\) và cắt mặt cầu tại hai điểm phân biệt \(M,N\), (\(M\)nằm giữa \(A\)và \(N\)). Tính giá trị nhỏ nhất của \(S = 8AM + AN\). A. \(20\). B. \(18\). C. \(16\). D. \(16\sqrt 2 \). Lời … [Đọc thêm...] về

Cho mặt cầu \(\left( S \right)\):\({x^2} + {y^2} + {z^2} – 4x + 2y – 2z – 3 = 0\) và điểm \(A\left( {5;3;1} \right)\). Một đường thẳng \(d\) thay đổi luôn đi qua \(A\) và cắt mặt cầu tại hai điểm phân biệt \(M,N\), (\(M\)nằm giữa \(A\)và \(N\)). Tính giá trị nhỏ nhất của \(S = 8AM + AN\).

Trong không gian với hệ toạ độ \(Oxyz\)cho tứ diện \(ABCD\)có \(A\left( {1;0;0} \right);\) \(B\left( {0;1;0} \right);\)\(C\left( {0;0;1} \right)\)và \(D\left( {1;3;1} \right)\). Tính thể tích của khối tứ diện \(ABCD\)?

Ngày 19/03/2022 Thuộc chủ đề:Trắc nghiệm Hình học OXYZ Tag với:Trac nghiem hinh hoc OXYZ hệ tọa độ

Câu hỏi: Trong không gian với hệ toạ độ \(Oxyz\)cho tứ diện \(ABCD\)có \(A\left( {1;0;0} \right);\) \(B\left( {0;1;0} \right);\)\(C\left( {0;0;1} \right)\)và \(D\left( {1;3;1} \right)\). Tính thể tích của khối tứ diện \(ABCD\)? A. \(\frac{4}{3}\). B. \(\frac{2}{3}\). C. \(\frac{1}{3}\). D. \(1\). Lời giải \(\left[ {\overrightarrow {AB} ;\overrightarrow … [Đọc thêm...] về

Trong không gian với hệ toạ độ \(Oxyz\)cho tứ diện \(ABCD\)có \(A\left( {1;0;0} \right);\) \(B\left( {0;1;0} \right);\)\(C\left( {0;0;1} \right)\)và \(D\left( {1;3;1} \right)\). Tính thể tích của khối tứ diện \(ABCD\)?

Trong không gian \(Oxyz\), cho \(\overrightarrow a \left( {1;3; – 2} \right)\), \(\overrightarrow b \left( {1;0;2} \right)\). Tọa độ \(\overrightarrow v = \overrightarrow a – 2\overrightarrow b \) là

Ngày 19/03/2022 Thuộc chủ đề:Trắc nghiệm Hình học OXYZ Tag với:Trac nghiem hinh hoc OXYZ hệ tọa độ

Câu hỏi: Trong không gian \(Oxyz\), cho \(\overrightarrow a \left( {1;3; - 2} \right)\), \(\overrightarrow b \left( {1;0;2} \right)\). Tọa độ \(\overrightarrow v = \overrightarrow a - 2\overrightarrow b \) là A. \(\overrightarrow v = \left( {1; - 3;6} \right)\). B. \(\overrightarrow v = \left( {1;3; - 2} \right)\). C. \(\overrightarrow v = \left( {3;3;2} … [Đọc thêm...] về

Trong không gian \(Oxyz\), cho \(\overrightarrow a \left( {1;3; – 2} \right)\), \(\overrightarrow b \left( {1;0;2} \right)\). Tọa độ \(\overrightarrow v = \overrightarrow a – 2\overrightarrow b \) là

Trong không gian \(Oxyz\), cho \(\overrightarrow {OM} = 2\overrightarrow i – 3\overrightarrow j + \overrightarrow k \). Hình chiếu của điểm \(M\) trên mặt phẳng \(\left( {Oxy} \right)\) là

Ngày 19/03/2022 Thuộc chủ đề:Trắc nghiệm Hình học OXYZ Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat phang

Câu hỏi: Trong không gian \(Oxyz\), cho \(\overrightarrow {OM} = 2\overrightarrow i - 3\overrightarrow j + \overrightarrow k \). Hình chiếu của điểm \(M\) trên mặt phẳng \(\left( {Oxy} \right)\) là A. \({M_1}\left( {2;0;0} \right)\). B. \({M_2}\left( {0;0;1} \right)\). C. \({M_3}\left( {2; - 3;0} \right)\). D. \({M_4}\left( {2;0;1} \right)\). Lời … [Đọc thêm...] về

Trong không gian \(Oxyz\), cho \(\overrightarrow {OM} = 2\overrightarrow i – 3\overrightarrow j + \overrightarrow k \). Hình chiếu của điểm \(M\) trên mặt phẳng \(\left( {Oxy} \right)\) là

Trong không gian Oxyz, cho điểm \(A\left( {1;2;3} \right)\) và mặt phẳng \(\left( P \right)\) có phương trình \(3x – 4y + 7z + 2 = 0\). Đường thẳng đi qua \(A\) và vuông góc với mặt phẳng \(\left( P \right)\) có phương trình là

Ngày 19/03/2022 Thuộc chủ đề:Trắc nghiệm Hình học OXYZ Tag với:Trac nghiem hinh hoc OXYZ phuong trinh duong thang

Câu hỏi: Trong không gian Oxyz, cho điểm \(A\left( {1;2;3} \right)\) và mặt phẳng \(\left( P \right)\) có phương trình \(3x - 4y + 7z + 2 = 0\). Đường thẳng đi qua \(A\) và vuông góc với mặt phẳng \(\left( P \right)\) có phương trình là A. \(\left\{ \begin{array}{l}x = 3 + t\\y = - 4 + 2t\\z = 7 + 3t\end{array} \right.{\rm{ }}\left( {t \in \mathbb{R}} \right)\). B. … [Đọc thêm...] về

Trong không gian Oxyz, cho điểm \(A\left( {1;2;3} \right)\) và mặt phẳng \(\left( P \right)\) có phương trình \(3x – 4y + 7z + 2 = 0\). Đường thẳng đi qua \(A\) và vuông góc với mặt phẳng \(\left( P \right)\) có phương trình là

Câu 84: Trong không gian với hệ tọa độ \(Oxyz\), cho đường thẳng \(d\): \(\frac{{x + 1}}{{ – 2}} = \frac{y}{1} = \frac{{z – 1}}{1}\) và điểm \(M\left( {1;2;3} \right)\). Mặt phẳng \(\left( P \right)\) chứa đường thẳng \(d\) sao cho khoảng cách từ \(M\) đến \(\left( P \right)\) là lớn nhất. Khi đó, tọa độ của vectơ pháp tuyến của mặt phẳng \(\left( P \right)\) là:

Ngày 19/03/2022 Thuộc chủ đề:Trắc nghiệm Hình học OXYZ Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat phang

Câu hỏi: Câu 84: Trong không gian với hệ tọa độ \(Oxyz\), cho đường thẳng \(d\): \(\frac{{x + 1}}{{ - 2}} = \frac{y}{1} = \frac{{z - 1}}{1}\) và điểm \(M\left( {1;2;3} \right)\). Mặt phẳng \(\left( P \right)\) chứa đường thẳng \(d\) sao cho khoảng cách từ \(M\) đến \(\left( P \right)\) là lớn nhất. Khi đó, tọa độ của vectơ pháp tuyến của mặt phẳng \(\left( P \right)\) … [Đọc thêm...] về

Câu 84: Trong không gian với hệ tọa độ \(Oxyz\), cho đường thẳng \(d\): \(\frac{{x + 1}}{{ – 2}} = \frac{y}{1} = \frac{{z – 1}}{1}\) và điểm \(M\left( {1;2;3} \right)\). Mặt phẳng \(\left( P \right)\) chứa đường thẳng \(d\) sao cho khoảng cách từ \(M\) đến \(\left( P \right)\) là lớn nhất. Khi đó, tọa độ của vectơ pháp tuyến của mặt phẳng \(\left( P \right)\) là:

69. Gọi \(\left( H \right)\)là hình phẳng giới hạn bởi đồ thị hàm số \(y = {e^x}\), trục \(Ox\)và hai đường thẳng \(x = 0,\) \(x = 1\). Thể tích của khối tròn xoay tạo thành khi quay \(\left( H \right)\) xung quanh trục\(Ox\) là

Ngày 19/03/2022 Thuộc chủ đề:Trắc nghiệm Tích phân, Trắc nghiệm Ứng dụng Tích phân Tag với:Trắc nghiệm ứng dụng tích phân diện tích hình phẳng

Câu hỏi: 69. Gọi \(\left( H \right)\)là hình phẳng giới hạn bởi đồ thị hàm số \(y = {e^x}\), trục \(Ox\)và hai đường thẳng \(x = 0,\) \(x = 1\). Thể tích của khối tròn xoay tạo thành khi quay \(\left( H \right)\) xung quanh trục\(Ox\) là A. \(\frac{\pi }{2}\left( {{e^2} - 1} \right)\). B. \(\pi \left( {{e^2} + 1} \right)\). C. \(\frac{\pi }{2}\left( {{e^2} + 1} … [Đọc thêm...] về69. Gọi \(\left( H \right)\)là hình phẳng giới hạn bởi đồ thị hàm số \(y = {e^x}\), trục \(Ox\)và hai đường thẳng \(x = 0,\) \(x = 1\). Thể tích của khối tròn xoay tạo thành khi quay \(\left( H \right)\) xung quanh trục\(Ox\) là

Trong không gian tọa độ \(Oxyz,\) cho mặt phẳng \(\left( P \right):x + 2y – 3z – 1 = 0.\) Vectơ nào dưới đây là một vectơ pháp tuyến của \(\left( P \right)\)?

Ngày 19/03/2022 Thuộc chủ đề:Trắc nghiệm Hình học OXYZ Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat phang

Câu hỏi: Trong không gian tọa độ \(Oxyz,\) cho mặt phẳng \(\left( P \right):x + 2y - 3z - 1 = 0.\) Vectơ nào dưới đây là một vectơ pháp tuyến của \(\left( P \right)\)? A. \({\vec n_1} = \left( {1;2; - 3} \right)\). B. \({\vec n_2} = \left( {2; - 3; - 1} \right)\). C. \({\vec n_3} = \left( {1;2;3} \right)\). D. \({\vec n_4} = \left( {1;2; - 1} \right)\). Lời … [Đọc thêm...] về

Trong không gian tọa độ \(Oxyz,\) cho mặt phẳng \(\left( P \right):x + 2y – 3z – 1 = 0.\) Vectơ nào dưới đây là một vectơ pháp tuyến của \(\left( P \right)\)?

Trong không gian \(Oxyz\), cho \(\overrightarrow u = \left( {1; – 1;2} \right)\) và \(\overrightarrow v = \left( {0; – 3;3} \right)\). Toạ độ của \(\overrightarrow u – \overrightarrow v \) là

Ngày 19/03/2022 Thuộc chủ đề:Trắc nghiệm Hình học OXYZ Tag với:Trac nghiem hinh hoc OXYZ hệ tọa độ

Câu hỏi: Trong không gian \(Oxyz\), cho \(\overrightarrow u = \left( {1; - 1;2} \right)\) và \(\overrightarrow v = \left( {0; - 3;3} \right)\). Toạ độ của \(\overrightarrow u - \overrightarrow v \) là A. \(\left( { - 1;2;1} \right)\). B. \(\left( {1; - 2;1} \right)\). C. \(\left( { - 1; - 2;1} \right)\). D. \(\left( {1;2; - 1} \right)\). Lời giải Ta có … [Đọc thêm...] về

Trong không gian \(Oxyz\), cho \(\overrightarrow u = \left( {1; – 1;2} \right)\) và \(\overrightarrow v = \left( {0; – 3;3} \right)\). Toạ độ của \(\overrightarrow u – \overrightarrow v \) là

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 690
  • Trang 691
  • Trang 692
  • Trang 693
  • Trang 694
  • Interim pages omitted …
  • Trang 1758
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.