Câu hỏi: Cho hai số thực \(x,y\) thỏa mãn \(x > y > 0\) và \(2{\log _3}\left( {x - y} \right) + {x^3} - {y^3} = 3\left( {x - y} \right)\left( {xy + 3} \right) + 2\). Khi đó, giá trị nhỏ nhất của biểu thức \(T = \frac{{\left( {x - y - 2} \right)\left( {xy + 1} \right)}}{{2x - y - 6}}\) bằng A. \( - 5\). B. \(5\). C. \(\sqrt 2+ 3\) D. … [Đọc thêm...] vềCho hai số thực \(x,y\) thỏa mãn \(x > y > 0\) và \(2{\log _3}\left( {x – y} \right) + {x^3} – {y^3} = 3\left( {x – y} \right)\left( {xy + 3} \right) + 2\). Khi đó, giá trị nhỏ nhất của biểu thức \(T = \frac{{\left( {x – y – 2} \right)\left( {xy + 1} \right)}}{{2x – y – 6}}\) bằng
Trắc nghiệm Logarit và hàm số lôgarit
Cho \(x,y\) là các số thực dương thỏa mãn \(\ln \frac{{x\left( {1 + y} \right)}}{{4\left( {2 – y} \right)}} = 2\left( {8 – x – 4y – xy} \right)\). Tìm giá trị nhỏ nhất của \(P = x + 3y\).
Câu hỏi: Cho \(x,y\) là các số thực dương thỏa mãn \(\ln \frac{{x\left( {1 + y} \right)}}{{4\left( {2 - y} \right)}} = 2\left( {8 - x - 4y - xy} \right)\). Tìm giá trị nhỏ nhất của \(P = x + 3y\). A. \(4\). B. \(5\). C. \(6\). D. \(7\). LỜI GIẢI CHI TIẾT Điều kiện: \(\left\{ \begin{array}{l}\frac{{x\left( {1 + y} \right)}}{{4\left( … [Đọc thêm...] vềCho \(x,y\) là các số thực dương thỏa mãn \(\ln \frac{{x\left( {1 + y} \right)}}{{4\left( {2 – y} \right)}} = 2\left( {8 – x – 4y – xy} \right)\). Tìm giá trị nhỏ nhất của \(P = x + 3y\).
Xét các số thực dương \(x\), \(y\) thỏa mãn \(\frac{{{{\rm{e}}^{{x^2} – 2y + 2019}}}}{2} = \frac{{1 + y}}{{{x^2} + 2021}}\). Tìm giá trị lớn nhấtcủa \(P = 2y – 3{x^2} + 4x\).
Câu hỏi: Xét các số thực dương \(x\), \(y\) thỏa mãn \(\frac{{{{\rm{e}}^{{x^2} - 2y + 2019}}}}{2} = \frac{{1 + y}}{{{x^2} + 2021}}\). Tìm giá trị lớn nhấtcủa \(P = 2y - 3{x^2} + 4x\). A. \({P_{\max }} = 2020\). B. \({P_{\max }} = 2021\). C. \({P_{\max }} = 2022\). D. \({P_{\max }} = 2023\). LỜI GIẢI CHI TIẾT Ta … [Đọc thêm...] vềXét các số thực dương \(x\), \(y\) thỏa mãn \(\frac{{{{\rm{e}}^{{x^2} – 2y + 2019}}}}{2} = \frac{{1 + y}}{{{x^2} + 2021}}\). Tìm giá trị lớn nhấtcủa \(P = 2y – 3{x^2} + 4x\).
Cho \(x,y\) là hai số thực dương thỏa mãn \(2x.{\log _2}\frac{x}{{y + 1}} = y – 4x + 1\). Giá trị lớn nhất của biểu thức \(P = {x^2} – {y^2}\) là
Câu hỏi: Cho \(x,y\) là hai số thực dương thỏa mãn \(2x.{\log _2}\frac{x}{{y + 1}} = y - 4x + 1\). Giá trị lớn nhất của biểu thức \(P = {x^2} - {y^2}\) là A. \( - \frac{1}{{12}}\). B. \(\frac{1}{{12}}\). C. \(\frac{5}{{12}}\). D. \(\frac{7}{{12}}\). LỜI GIẢI CHI TIẾT Từ giả thiết ta có \(2x{\log _2}\frac{x}{{y + 1}} = … [Đọc thêm...] vềCho \(x,y\) là hai số thực dương thỏa mãn \(2x.{\log _2}\frac{x}{{y + 1}} = y – 4x + 1\). Giá trị lớn nhất của biểu thức \(P = {x^2} – {y^2}\) là
Cho \(\left( {x;y} \right)\) là các cặp số thỏa \(0 \le y \le 2021\) và \(3x + {x^2} – {3^{y + 1}} = {9^y}\). Tìm giá trị nhỏ nhất của biểu thức \(P = {y^3} – 12{\log _3}x + 2.\)
Câu hỏi: Cho \(\left( {x;y} \right)\) là các cặp số thỏa \(0 \le y \le 2021\) và \(3x + {x^2} - {3^{y + 1}} = {9^y}\). Tìm giá trị nhỏ nhất của biểu thức \(P = {y^3} - 12{\log _3}x + 2.\) A. \( - 20\). B. \(2\). C. \(8254631011\). D. \( - 14\). LỜI GIẢI CHI TIẾT Ta có: \(3x + {x^2} - {3^{y + 1}} = {9^y}\) \( \Leftrightarrow {x^2} … [Đọc thêm...] vềCho \(\left( {x;y} \right)\) là các cặp số thỏa \(0 \le y \le 2021\) và \(3x + {x^2} – {3^{y + 1}} = {9^y}\). Tìm giá trị nhỏ nhất của biểu thức \(P = {y^3} – 12{\log _3}x + 2.\)
Cho các số thực \(x,y,a,b\) thỏa mãn điều kiện \(x > 1,y > 1,a > 0,b > 0\), \(x + y = xy\). Biết rằng biểu thức \(P = \frac{{y{a^x} + x{b^y}}}{{abxy}}\) đạt giá trị nhỏ nhất \(m\) khi \(a = {b^q}\). Khẳng định nào sau đây đúng ?
Cho các số thực \(x,y,a,b\) thỏa mãn điều kiện \(x > 1,y > 1,a > 0,b > 0\), \(x + y = xy\). Biết rằng biểu thức \(P = \frac{{y{a^x} + x{b^y}}}{{abxy}}\) đạt giá trị nhỏ nhất \(m\) khi \(a = {b^q}\). Khẳng định nào sau đây đúng ? A. \(m + \frac{1}{q} = \frac{y}{{y - 1}}\). B. \(m + \frac{1}{q} = \frac{x}{{x - 1}}\). … [Đọc thêm...] vềCho các số thực \(x,y,a,b\) thỏa mãn điều kiện \(x > 1,y > 1,a > 0,b > 0\), \(x + y = xy\). Biết rằng biểu thức \(P = \frac{{y{a^x} + x{b^y}}}{{abxy}}\) đạt giá trị nhỏ nhất \(m\) khi \(a = {b^q}\). Khẳng định nào sau đây đúng ?
. Có bao nhiêu cặp số nguyên \(\left( {x;y} \right)\) thỏa mãn bất phương trình \(\left( {{x^2} + {y^2} – 2x – 24} \right)\left[ {{{\log }_2}\left( {\frac{{{x^2} + {y^2}}}{{5x + 2y – 20}}} \right) + {x^2} + {y^2} – 20x – 8y + 78} \right] \le 0\).
Câu hỏi:
. Có bao nhiêu cặp số nguyên \(\left( {x;y} \right)\) thỏa mãn bất phương trình \(\left( {{x^2} + {y^2} - 2x - 24} \right)\left[ {{{\log }_2}\left( {\frac{{{x^2} + {y^2}}}{{5x + 2y - 20}}} \right) + {x^2} + {y^2} - 20x - 8y + 78} \right] \le 0\).
A. \(116\).
B. \(187\).
C. \(119\).
D. \(120\).
Lời giải
\(\begin{array}{l}\left( {{x^2} + {y^2} - 2x - … [Đọc thêm...] về . Có bao nhiêu cặp số nguyên \(\left( {x;y} \right)\) thỏa mãn bất phương trình \(\left( {{x^2} + {y^2} – 2x – 24} \right)\left[ {{{\log }_2}\left( {\frac{{{x^2} + {y^2}}}{{5x + 2y – 20}}} \right) + {x^2} + {y^2} – 20x – 8y + 78} \right] \le 0\).
. Cho các số thực \(x\), \(y\) thỏa mãn \(5 + {16.4^{{x^2} – 2y}} = \left( {5 + {{16}^{{x^2} – 2y}}} \right){.7^{2y – {x^2} + 2}}\). Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P = \frac{{10x + 6y + 26}}{{2x + 2y + 5}}\). Tính \(T = M + m\).
Câu hỏi:
. Cho các số thực \(x\), \(y\) thỏa mãn \(5 + {16.4^{{x^2} - 2y}} = \left( {5 + {{16}^{{x^2} - 2y}}} \right){.7^{2y - {x^2} + 2}}\). Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P = \frac{{10x + 6y + 26}}{{2x + 2y + 5}}\). Tính \(T = M + m\).
A. \(T = \frac{{19}}{2}\).
B. \(T = \frac{{21}}{2}\).
C. \(T = 10\).
D. … [Đọc thêm...] về . Cho các số thực \(x\), \(y\) thỏa mãn \(5 + {16.4^{{x^2} – 2y}} = \left( {5 + {{16}^{{x^2} – 2y}}} \right){.7^{2y – {x^2} + 2}}\). Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P = \frac{{10x + 6y + 26}}{{2x + 2y + 5}}\). Tính \(T = M + m\).
. Cho hai số thực dương \(a\), \(b\) thỏa mãn \(\frac{1}{2}{\log _{2020}}a = {\log _{2020}}\frac{1}{b}\). Giá trị nhỏ nhất của biểu thức \(P = 4a + {b^2} – 3{\log _3}\left( {4a + {b^2}} \right)\) được viết dưới dạng \(x – y{\log _3}z\), với \(x,y,z\) là các số nguyên dương lớn hơn 2. Khi đó, tổng \(x + 2y + z\) có giá trị bằng
Câu hỏi:
. Cho hai số thực dương \(a\), \(b\) thỏa mãn \(\frac{1}{2}{\log _{2020}}a = {\log _{2020}}\frac{1}{b}\). Giá trị nhỏ nhất của biểu thức \(P = 4a + {b^2} - 3{\log _3}\left( {4a + {b^2}} \right)\) được viết dưới dạng \(x - y{\log _3}z\), với \(x,y,z\) là các số nguyên dương lớn hơn 2. Khi đó, tổng \(x + 2y + z\) có giá trị bằng
A. \(15\).
B. \(2\).
C. … [Đọc thêm...] về . Cho hai số thực dương \(a\), \(b\) thỏa mãn \(\frac{1}{2}{\log _{2020}}a = {\log _{2020}}\frac{1}{b}\). Giá trị nhỏ nhất của biểu thức \(P = 4a + {b^2} – 3{\log _3}\left( {4a + {b^2}} \right)\) được viết dưới dạng \(x – y{\log _3}z\), với \(x,y,z\) là các số nguyên dương lớn hơn 2. Khi đó, tổng \(x + 2y + z\) có giá trị bằng
Có bao nhiêu giá trị nguyên của tham số \(m\) thuộc khoảng \(\left( { – 2020;\,\,2020} \right)\) để hàm số \(y = \log \left[ {{{\log }_{2020}}\left( {{x^2} + 3{m^2}x + {{2020}^x} – 2m – 2021} \right)} \right]\) xác định với mọi \(x\) thuộc \(\left( {1;\, + \infty } \right)\)?
Câu hỏi:
Có bao nhiêu giá trị nguyên của tham số \(m\) thuộc khoảng \(\left( { - 2020;\,\,2020} \right)\) để hàm số \(y = \log \left[ {{{\log }_{2020}}\left( {{x^2} + 3{m^2}x + {{2020}^x} - 2m - 2021} \right)} \right]\) xác định với mọi \(x\) thuộc \(\left( {1;\, + \infty } \right)\)?
A. \(2019\).
B. \(4040\).
C. \(4038\).
D. \(4037\).
Lời giải
Điều … [Đọc thêm...] về Có bao nhiêu giá trị nguyên của tham số \(m\) thuộc khoảng \(\left( { – 2020;\,\,2020} \right)\) để hàm số \(y = \log \left[ {{{\log }_{2020}}\left( {{x^2} + 3{m^2}x + {{2020}^x} – 2m – 2021} \right)} \right]\) xác định với mọi \(x\) thuộc \(\left( {1;\, + \infty } \right)\)?

