• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Ham so Logarit VDC

. Ông Bình vay ngân hàng \(600\) triệu đồng với lãi suất \(1\% \)/tháng. Ông ấy muốn hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là 18 triệu đồng. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số tháng mà ông Bình cần trả hết nợ ngân hàng là bao nhiêu kể từ khi vay?

Ngày 20/10/2021 Thuộc chủ đề:Trắc nghiệm Toán thực tế về hàm số mũ và Lôgarit Tag với:Ham so Logarit VDC

Câu hỏi: . Ông Bình vay ngân hàng \(600\) triệu đồng với lãi suất \(1\% \)/tháng. Ông ấy muốn hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là 18 triệu đồng. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số tháng mà … [Đọc thêm...] về

. Ông Bình vay ngân hàng \(600\) triệu đồng với lãi suất \(1\% \)/tháng. Ông ấy muốn hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là 18 triệu đồng. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số tháng mà ông Bình cần trả hết nợ ngân hàng là bao nhiêu kể từ khi vay?

. Tìm số nghiệm của phương trình \({3.8^x} + {4.12^x} – {18^x} – {2.27^x} = 0\).

Ngày 20/10/2021 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình mũ Tag với:Ham so Logarit VDC

Câu hỏi: . Tìm số nghiệm của phương trình \({3.8^x} + {4.12^x} - {18^x} - {2.27^x} = 0\). A. \(2\). B. \(3\). C. \(0\). D. \(1\). Lời giải Chia cả 2 vế của phương trình cho \({27^x} > 0\) ta được: \(\begin{array}{l}3.{\left( {\frac{8}{{27}}} \right)^x} + 4.{\left( {\frac{{12}}{{27}}} \right)^x} - {\left( {\frac{{18}}{{27}}} \right)^x} - 2 = 0\\ … [Đọc thêm...] về

. Tìm số nghiệm của phương trình \({3.8^x} + {4.12^x} – {18^x} – {2.27^x} = 0\).

Cho hàm số \(y = f\left( x \right)\) có bảng xét dấu đạo hàm như sau:

Hàm số \(y = f\left( {2 – 2x} \right) + {e^{2x + 1}}\) đồng biến trên khoảng nào dưới đây?

Ngày 20/10/2021 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:Ham so Logarit VDC

Câu hỏi: Cho hàm số \(y = f\left( x \right)\) có bảng xét dấu đạo hàm như sau: Hàm số \(y = f\left( {2 - 2x} \right) + {e^{2x + 1}}\) đồng biến trên khoảng nào dưới đây? A. \(\left( { - \infty \,; - 1} \right)\). B. \(\left( { - 2\,;\,0} \right)\). C. \(\left( {0\,;\,1} \right)\). D. \(\left( { - 1\,; + \infty } \right)\). Lời giải Ta có: \(y = f\left( … [Đọc thêm...] về

Cho hàm số \(y = f\left( x \right)\) có bảng xét dấu đạo hàm như sau:

Hàm số \(y = f\left( {2 – 2x} \right) + {e^{2x + 1}}\) đồng biến trên khoảng nào dưới đây?

Số giá trị nguyên của tham số \(m \in \left[ { – 10;10} \right]\) để hàm số \(y = \frac{{{{\log }_{\frac{1}{3}}}x – 2}}{{{{\log }_3}x – m}}\) đồng biến trên khoảng \(\left( {0;3} \right)\)là

Ngày 20/10/2021 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:Ham so Logarit VDC

Câu hỏi: Số giá trị nguyên của tham số \(m \in \left[ { - 10;10} \right]\) để hàm số \(y = \frac{{{{\log }_{\frac{1}{3}}}x - 2}}{{{{\log }_3}x - m}}\) đồng biến trên khoảng \(\left( {0;3} \right)\)là A. \(10\). B. \(11\). C. \(12\). D. \(13\). Lời giải Ta có \(y = \frac{{{{\log }_{\frac{1}{3}}}x - 2}}{{{{\log }_3}x - m}} = \frac{{{{\log }_3}x + 2}}{{ - … [Đọc thêm...] về

Số giá trị nguyên của tham số \(m \in \left[ { – 10;10} \right]\) để hàm số \(y = \frac{{{{\log }_{\frac{1}{3}}}x – 2}}{{{{\log }_3}x – m}}\) đồng biến trên khoảng \(\left( {0;3} \right)\)là

. Số nghiệm của phương trình \(\sqrt {\left( {x – 10} \right){x^{4\log x}}} = \sqrt {100{x^4}\left( {x – 10} \right)} \) bằng

Ngày 20/10/2021 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình mũ Tag với:Ham so Logarit VDC

Câu hỏi: . Số nghiệm của phương trình \(\sqrt {\left( {x - 10} \right){x^{4\log x}}} = \sqrt {100{x^4}\left( {x - 10} \right)} \) bằng A. \(2\). B. \(1\). C. \(3\). D. \(4\). Lời giải Điều kiện: \(x \ge 10\). \(\sqrt {\left( {x - 10} \right){x^{4\log x}}} = \sqrt {100{x^4}\left( {x - 10} \right)} \) . Nhận thấy \(x = 10\) là một nghiệm phương … [Đọc thêm...] về

. Số nghiệm của phương trình \(\sqrt {\left( {x – 10} \right){x^{4\log x}}} = \sqrt {100{x^4}\left( {x – 10} \right)} \) bằng

Cho hàm số \(f\left( x \right) = {\left( {{x^{1 + \frac{1}{{2{{\log }_4}x}}}} + {8^{\frac{1}{{3{{\log }_{{x^2}}}2}}}} + 1} \right)^{\frac{1}{2}}}\) với \(0 < x \ne 1\). Giá trị của biểu thức \(P = f\left( {f\left( {2020} \right)} \right)\) bằng

Ngày 20/10/2021 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:Ham so Logarit VDC

Câu hỏi: Cho hàm số \(f\left( x \right) = {\left( {{x^{1 + \frac{1}{{2{{\log }_4}x}}}} + {8^{\frac{1}{{3{{\log }_{{x^2}}}2}}}} + 1} \right)^{\frac{1}{2}}}\) với \(0 < x \ne 1\). Giá trị của biểu thức \(P = f\left( {f\left( {2020} \right)} \right)\) bằng A. \(2019\). B. \(2020\). C. \(2022\). D. \(2021\). Lời giải Ta có: \(\left\{ \begin{array}{l}{x^{1 + … [Đọc thêm...] về

Cho hàm số \(f\left( x \right) = {\left( {{x^{1 + \frac{1}{{2{{\log }_4}x}}}} + {8^{\frac{1}{{3{{\log }_{{x^2}}}2}}}} + 1} \right)^{\frac{1}{2}}}\) với \(0 < x \ne 1\). Giá trị của biểu thức \(P = f\left( {f\left( {2020} \right)} \right)\) bằng

Cho hàm số \(y = f\left( x \right) = 2020\ln \left( {{{\rm{e}}^{\frac{x}{{2020}}}} + \sqrt {\rm{e}} } \right)\). Tính giá trị biểu thức \(T = f’\left( 1 \right) + f’\left( 2 \right) + … + f’\left( {2020} \right)\).

Ngày 20/10/2021 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:Ham so Logarit VDC

Câu hỏi: Cho hàm số \(y = f\left( x \right) = 2020\ln \left( {{{\rm{e}}^{\frac{x}{{2020}}}} + \sqrt {\rm{e}} } \right)\). Tính giá trị biểu thức \(T = f'\left( 1 \right) + f'\left( 2 \right) + ... + f'\left( {2020} \right)\). A. \(T = \frac{{2021}}{2} + \frac{{\sqrt e }}{{\sqrt e + 1}}\). B. \(T = 1011 + \frac{{\sqrt e }}{{\sqrt e + 1}}\). C. \(T = \frac{{2019}}{2} … [Đọc thêm...] về

Cho hàm số \(y = f\left( x \right) = 2020\ln \left( {{{\rm{e}}^{\frac{x}{{2020}}}} + \sqrt {\rm{e}} } \right)\). Tính giá trị biểu thức \(T = f’\left( 1 \right) + f’\left( 2 \right) + … + f’\left( {2020} \right)\).

. Cho phương trình \(m{.2^{{x^2} – 5x + 6}} + {2^{1 – {x^2}}} = {2.2^{6 – 5x}} + m\) với \(m\) là tham số thực. Có tất cả bao nhiêu giá trị của \(m\) để phương trình có đúng ba nghiệm phân biệt.

Ngày 20/10/2021 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình mũ Tag với:Ham so Logarit VDC

Câu hỏi: . Cho phương trình \(m{.2^{{x^2} - 5x + 6}} + {2^{1 - {x^2}}} = {2.2^{6 - 5x}} + m\) với \(m\) là tham số thực. Có tất cả bao nhiêu giá trị của \(m\) để phương trình có đúng ba nghiệm phân biệt. A. 1. B. 2. C. 3. D. 4. Lời giải Ta có \(m{.2^{{x^2} - 5x + 6}} + {2^{1 - {x^2}}} = {2.2^{6 - 5x}} + m \Leftrightarrow m{.2^{{x^2} - 5x + 6}} + {2^{1 - … [Đọc thêm...] về

. Cho phương trình \(m{.2^{{x^2} – 5x + 6}} + {2^{1 – {x^2}}} = {2.2^{6 – 5x}} + m\) với \(m\) là tham số thực. Có tất cả bao nhiêu giá trị của \(m\) để phương trình có đúng ba nghiệm phân biệt.

. Nghiệm của phương trình \({2.3^{\sqrt x + \sqrt[4]{x}}} + {9^{\sqrt[4]{x} + \frac{1}{2}}} = {9^{\sqrt x }}\) có dạng \(x = \frac{{a + b\sqrt 5 }}{c}\) , tính \(S = a + b + c\)

Ngày 19/10/2021 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình mũ Tag với:Ham so Logarit VDC

Câu hỏi: . Nghiệm của phương trình \({2.3^{\sqrt x + \sqrt[4]{x}}} + {9^{\sqrt[4]{x} + \frac{1}{2}}} = {9^{\sqrt x }}\) có dạng \(x = \frac{{a + b\sqrt 5 }}{c}\) , tính \(S = a + b + c\) A. \(S = 11\). B. \(S = 12\). C. \(0S = 10\). D. \(S = 13\). Lời giải Điều kiện xác định :\(x \ge 0\) Chia hai vế phương trình cho ta được\({2.3^{\sqrt[4]{x} - \sqrt x … [Đọc thêm...] về

. Nghiệm của phương trình \({2.3^{\sqrt x + \sqrt[4]{x}}} + {9^{\sqrt[4]{x} + \frac{1}{2}}} = {9^{\sqrt x }}\) có dạng \(x = \frac{{a + b\sqrt 5 }}{c}\) , tính \(S = a + b + c\)

Cho \(x,y,z\) thoả mãn \(\left\{ \begin{array}{l}{x^2} + {y^2} + {z^2} = 2\\x + y + z = 2\end{array} \right.\) và hàm số\(f\left( x \right) = \left( {\frac{1}{3}{x^3} – 2{x^2} + x} \right)\ln 2\). Đặt \(g\left( x \right) = {2020^{f\left( x \right) + x – \left( {x – 1 + \sqrt 3 } \right)\ln \left( {x – 1 + \sqrt 3 } \right)}} – {2021^{\left( {x – 1 + \sqrt 3 } \right)\ln \left( {x – 1 + \sqrt 3 } \right) – f\left( x \right) – x}}\) . Số nghiệm thực của phương trình \(g’\left( x \right) = \,0\) là

Ngày 19/10/2021 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit Tag với:Ham so Logarit VDC

Câu hỏi: Cho \(x,y,z\) thoả mãn \(\left\{ \begin{array}{l}{x^2} + {y^2} + {z^2} = 2\\x + y + z = 2\end{array} \right.\) và hàm số\(f\left( x \right) = \left( {\frac{1}{3}{x^3} - 2{x^2} + x} \right)\ln 2\). Đặt \(g\left( x \right) = {2020^{f\left( x \right) + x - \left( {x - 1 + \sqrt 3 } \right)\ln \left( {x - 1 + \sqrt 3 } \right)}} - {2021^{\left( {x - 1 + \sqrt 3 } … [Đọc thêm...] về

Cho \(x,y,z\) thoả mãn \(\left\{ \begin{array}{l}{x^2} + {y^2} + {z^2} = 2\\x + y + z = 2\end{array} \right.\) và hàm số\(f\left( x \right) = \left( {\frac{1}{3}{x^3} – 2{x^2} + x} \right)\ln 2\). Đặt \(g\left( x \right) = {2020^{f\left( x \right) + x – \left( {x – 1 + \sqrt 3 } \right)\ln \left( {x – 1 + \sqrt 3 } \right)}} – {2021^{\left( {x – 1 + \sqrt 3 } \right)\ln \left( {x – 1 + \sqrt 3 } \right) – f\left( x \right) – x}}\) . Số nghiệm thực của phương trình \(g’\left( x \right) = \,0\) là

  • « Chuyển đến Trang trước
  • Trang 1
  • Trang 2
  • Trang 3
  • Trang 4
  • Trang 5
  • Trang 6
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.