• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Bài tập Hàm số / Đề: Cho hàm số $y = x^3 – 3x^2 – mx + 2$. Tìm $m$ để hàm số có cực trị và các điểm cực trị cách đều đường thẳng $y = x – 1$

Đề: Cho hàm số $y = x^3 – 3x^2 – mx + 2$. Tìm $m$ để hàm số có cực trị và các điểm cực trị cách đều đường thẳng $y = x – 1$

Ngày 12/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Cực trị của hàm số

ham so
Đề bài: Cho hàm số $y = x^3 – 3x^2 – mx + 2$. Tìm $m$ để hàm số có cực trị và các điểm cực trị cách đều đường thẳng $y = x – 1$

Lời giải

Hàm số có CĐ, CT $ \Leftrightarrow y’ = 3{x^2} – 6x – m = 0$ có 2 nghiệm phân biệt $ \Leftrightarrow \Delta ‘ = 9 + 3m > 0 \Leftrightarrow m > – 3 (*) $
Gọi $x_1, x_2$ là hai nghiệm của phương trình $y’=0$. Theo định lí Vi-ét ta có:
$\begin{cases}x_1+x_2 =2 \\ x_1.x_2 = – \frac{m}{3}  \end{cases} $
Thực hiện chia $y$ cho $y’$ ta được:
$y= y’   \left ( \frac{1}{3}x-\frac{1}{3}   \right ) –  \left ( \frac{2m}{3}+2  \right )x+2-\frac{m}{3}  $
$y_1=-  \left ( \frac{2m}{3}+2  \right )x_1+2-\frac{m}{3} $
$y_2=-  \left ( \frac{2m}{3}+2  \right )x_2+2-\frac{m}{3} $
Phương trình đường thẳng đi qua hai điểm cực trị: $y=-  \left ( \frac{2m}{3}+2  \right )+2-\frac{m}{3}$
$\Rightarrow y_1+y_2= –  \left ( \frac{2m}{3}+2  \right )  \left ( x_1+x_2  \right ) +  2\left ( 2-\frac{m}{3} \right ) $
$= – 2 \left ( \frac{2m}{3}+2  \right )   +  2\left ( 2-\frac{m}{3} \right ) =-2m$
TH1: Phương trình đường thẳng đi qua hai điểm cực trị song song hoặc trùng với đường thẳng $y=x-1$ $\Leftrightarrow –  \left ( \frac{2m}{3}+2  \right )=1 \Leftrightarrow m=\frac{3}{2} (TM) $
TH2: Trung điểm $I$ của $AB$ nằm trên đường thẳng $y=x-1$
Tọa độ của $I=  \left ( \frac{x_1+x_2 }{2}; \frac{y_1+y_2 }{2}   \right )=   \left ( 1; -m \right )  $
$I \in y=x-1 \Leftrightarrow -m=1-1 \Leftrightarrow m=0$
Vậy giá trị của $m$ cần tìm: $m= \left\{ {0; – \frac{3}{2} } \right\} $

Bài liên quan:

  1. Cho hàm số $y = -x^3 -4x^2 -4x +3$. Hàm số đạt cực tiểu tại điểm nào dưới đây?
  2. Cho hàm số $y=f(x)$ liên tục trên đoạn $[-16;32]$ và có đồ thị như hình vẽ bên. Khẳng định nào sau đây là đúng?
  3. Cho hàm số $y=\dfrac{x^2+4x+4}{-x+5}$. Gọi $A,B$ là hai điểm cực trị của đồ thị hàm số khi đó diện tích tam giác $OAB$ bằng
  4. Cho hàm số $y=\dfrac{-3x^2-x+5}{-x+5}$. Tổng giá trị cực đại và giá trị cực tiểu của hàm số bằng
  5. Nhìn vào đồ thị hàm số bên, ta thấy đạt cực tiểu tại điểm

    de thi toan online

  6. Cho hàm số $f(x)$ có đạo hàm $f^{\prime}(x)=\left(x + 2\right) \left(x + 5\right)^{2}$. Số điểm cực trị của hàm số $f(x)$ là
  7. Nhìn vào đồ thị hàm số bên ta thấy giá trị cực đại là

    de thi toan online

  8. Cho hàm số $y=f(x)$ có bảng biến thiên như hình bên dưới. Điểm cực tiểu của hàm số là
  9. Cho hàm số $y = f(x) = \dfrac{ax^2 + bx + c}{dx + e}$ có bảng biến thiên bên dưới. Hàm số có giá trị cực tiểu bằng?
  10. Cho hàm số $y=\dfrac{-x^2-3x}{x+4}$. Khoảng cách giữa hai điểm cực trị của đồ thị hàm số bằng
  11. Cho hàm số $y=\dfrac{-x^2-3x-1}{-x-3}$. Đường thẳng qua hai điểm cực trị của đồ thị hàm số có phương trình
  12. Cho hàm số $y = f(x) =\dfrac{ax^2 + bx + c}{dx + e}$ có đồ thị như hình bên. Điểm cực tiểu của đồ thị hàm số là
  13. Cho hàm số $y=f(x)$ có bảng biến thiên như bên dưới. Đồ thị hàm số đạt cực đại tại điểm nào sau đây?
  14. Hàm số nào dưới đây không có cực trị ?
  15. Chứng minh rằng hàm số \(y = {x^4} – 6{x^2} + 4x + 6\) luôn luôn có 3 cực trị đồng thời gốc toạ độ O là trọng tâm của tam giác tạo bởi 3 đỉnh là 3 điểm cực trị của đồ thị hàm số.

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Bài tập tự luận về hàm số

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.