• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán, Lý, Hóa, Sinh, Anh, Soạn Văn từ lớp 1 đến lớp 12, Học toán và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Môn Lý
  • Môn Hóa
  • Môn Anh
  • Môn Sinh
  • Môn Văn
Bạn đang ở:Trang chủ / Bài tập Hàm số / Đề: Cho hàm số $y = x^3 – 3x^2 – mx + 2$. Tìm $m$ để hàm số có cực trị và các điểm cực trị cách đều đường thẳng $y = x – 1$

Đề: Cho hàm số $y = x^3 – 3x^2 – mx + 2$. Tìm $m$ để hàm số có cực trị và các điểm cực trị cách đều đường thẳng $y = x – 1$

Đăng ngày: 12/03/2020 Biên tâp: admin Để lại bình luận Thuộc chủ đề:Bài tập Hàm số

ham so
Đề bài: Cho hàm số $y = x^3 – 3x^2 – mx + 2$. Tìm $m$ để hàm số có cực trị và các điểm cực trị cách đều đường thẳng $y = x – 1$

Lời giải

Hàm số có CĐ, CT $ \Leftrightarrow y’ = 3{x^2} – 6x – m = 0$ có 2 nghiệm phân biệt $ \Leftrightarrow \Delta ‘ = 9 + 3m > 0 \Leftrightarrow m > – 3 (*) $
Gọi $x_1, x_2$ là hai nghiệm của phương trình $y’=0$. Theo định lí Vi-ét ta có:
$\begin{cases}x_1+x_2 =2 \\ x_1.x_2 = – \frac{m}{3}  \end{cases} $
Thực hiện chia $y$ cho $y’$ ta được:
$y= y’   \left ( \frac{1}{3}x-\frac{1}{3}   \right ) –  \left ( \frac{2m}{3}+2  \right )x+2-\frac{m}{3}  $
$y_1=-  \left ( \frac{2m}{3}+2  \right )x_1+2-\frac{m}{3} $
$y_2=-  \left ( \frac{2m}{3}+2  \right )x_2+2-\frac{m}{3} $
Phương trình đường thẳng đi qua hai điểm cực trị: $y=-  \left ( \frac{2m}{3}+2  \right )+2-\frac{m}{3}$
$\Rightarrow y_1+y_2= –  \left ( \frac{2m}{3}+2  \right )  \left ( x_1+x_2  \right ) +  2\left ( 2-\frac{m}{3} \right ) $
$= – 2 \left ( \frac{2m}{3}+2  \right )   +  2\left ( 2-\frac{m}{3} \right ) =-2m$
TH1: Phương trình đường thẳng đi qua hai điểm cực trị song song hoặc trùng với đường thẳng $y=x-1$ $\Leftrightarrow –  \left ( \frac{2m}{3}+2  \right )=1 \Leftrightarrow m=\frac{3}{2} (TM) $
TH2: Trung điểm $I$ của $AB$ nằm trên đường thẳng $y=x-1$
Tọa độ của $I=  \left ( \frac{x_1+x_2 }{2}; \frac{y_1+y_2 }{2}   \right )=   \left ( 1; -m \right )  $
$I \in y=x-1 \Leftrightarrow -m=1-1 \Leftrightarrow m=0$
Vậy giá trị của $m$ cần tìm: $m= \left\{ {0; – \frac{3}{2} } \right\} $

Tag với:Cực trị của hàm số

Bài liên quan:

  • Đề: Cho hàm số: $y = x^4 – 2mx^2 + 2m + m^4$$1.$ Với những giá trị nào của $m$ thì hàm số có cực đại và cực tiểu? Đồng thời các điểm cực đại và cực tiểu lập thành một tam giác đều.$2.$ Khảo sát sự biến thiên và vẽ đồ thị hàm số ứng với $m = 1.$
  • Đề: Cho hàm:  $y = {x^3} + m{x^2} – 1$a) Chứng minh rằng với mọi $m \ne 0$, hàm số luôn có cực đại và cực tiểu.b) Chứng minh rằng với mọi $m$, phương trình ${x^3} + m{x^2} – 1 = 0$ luôn có một nghiệm dương.c) Xác định $m$ để phương trình ${x^3} + m{x^2} – 1 = 0$ có một nghiệm duy nhất
  • Đề: Cho hàm số: $y = 2{x^3} – 3(2m + 1){x^2} + 6m(m + 1)x + 1\,\,\,      (1)$$1.$ Khảo sát hàm số $(1)$ khi $m = 1.$$2.$ Chứng minh rằng với mọi $m$, hàm số ($1$) luôn đạt cực trị tại $x_1; x_2$ với $x_2 – x_1$ không phụ thuộc $m.$
  • Đề: Cho hàm số $y = x^3 + (1 – 2m)x^2 + (2 – m)x + m + 2 (C)$. Tìm m để hàm số có CĐ, CT thỏa mãn $x_{CT} < 2$
  • Đề: Cho hàm số: $y = \frac{{{x^2} + (m + 2)x – m}}{{x + 1}}$                (1)a) Với giá trị nào của $m$, hàm số (1) có cực đại, cực tiểu?b) Xác định giá trị của $m$ để cho đường thẳng $y =  – (x + 4)$ cắt đường cong (1) tại hai điểm đối xứng nhau qua đường thẳng phân giác của góc phần tư thứ nhất
  • Đề: Cho hàm số $y = {x^3} + (1 – 2m){x^2} + (2 – m)x + m + 2\,\,\,\, (C)$. Tìm m để hàm số có CĐ, CT thỏa mãn hoành độ các điểm cực trị lớn hơn -1.
  • Đề: Xem hàm số: $y = \frac{{{x^2} + m({m^2} – 1)x – {m^4} + 1}}{{x – m}}$a) Chứng minh rằng với mọi giá trị $m$, hàm số luôn có cực đại và cực tiểu.b) Chứng minh rằng trên mặt phẳng tọa độ tồn tại một điểm duy nhất với tính chất: nó là điểm cực đại cả đồ thị ứng với một giá trị nào đó của $m$, và nó là điểm cực tiểu của đồ thị ứng với một giá trị khác của $m$
  • Đề: Cho hàm số \(y = \frac{{2{m^2}{x^2} + \left( {2 – {m^2}} \right)\left( {mx + 1} \right)}}{{mx + 1}}\,\,\left( 1 \right)\)$1$. Khảo sát và vẽ đồ thị hàm sô trên $m= -2$$2$. Chứng minh  rằng với mọi $m$ \( \ne 0\), hàm số $(1)$ luôn có cực đại và cực tiểu.$3$. Chứng minh với mọi $m$ \( \ne 0\),tiệm cận xiên của đồ thị hàm số $(1)$ luôn tiếp xúc với parabol cố định. Tìm phương trình của parabol đó.
  • Đề: Cho hàm số       $y = \frac{{2{x^2} – 3x + m}}{{x – m}}$            (1)1)    Xác định tham số $m$ để đồ thị hàm số không có tiệm cận đứng. Vẽ đồ thị hàm số trong trường hợp đó.2) Tìm $m$ để hàm số (1) có cực đại, cực tiểu thỏa mãn điều kiện:  $| {{y_{CD}} – {y_{CT}}} | > 8$3) Giả sử $m \ne 0$ và $m \ne 1$. Chứng minh rằng tiếp tuyến của (1) tại giao điểm của nó với trục tung luôn cắt tiệm cận đứng tại điểm có tung độ bằng 1
  • Đề: Cho hàm số:  $y = \frac{{2{x^3}}}{3} + (cos a – 3sin a){x^2} – 8(cos2a + 1)x + 1$  với $a$ là tham số.a) Chứng minh rằng hàm số luôn luôn có cực đại, cực tiểu.b) Giả sử hàm số đạt cực trị tại hai điểm có hoành độ ${x_1},{x_2}$. Chứng minh rằng $x_1^2 + x_2^2 \le 18$ với mọi $a$

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Bài tập tự luận về hàm số




Booktoan.com (2015 - 2021) Học Toán online - Giải bài tập môn Toán, Lý, Hóa, Sinh, Anh, Soạn Văn, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.