• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

Đề: Cho hàm số: $y = \frac{{{x^2} + (m + 2)x – m}}{{x + 1}}$                (1)a) Với giá trị nào của $m$, hàm số (1) có cực đại, cực tiểu?b) Xác định giá trị của $m$ để cho đường thẳng $y =  – (x + 4)$ cắt đường cong (1) tại hai điểm đối xứng nhau qua đường thẳng phân giác của góc phần tư thứ nhất

Đăng ngày: 14/03/2020 Biên tập: admin Thuộc chủ đề:Bài tập Hàm số Tag với:Cực trị của hàm số

adsense

ham so
Đề bài: Cho hàm số: $y = \frac{{{x^2} + (m + 2)x – m}}{{x + 1}}$                (1)a) Với giá trị nào của $m$, hàm số (1) có cực đại, cực tiểu?b) Xác định giá trị của $m$ để cho đường thẳng $y =  – (x + 4)$ cắt đường cong (1) tại hai điểm đối xứng nhau qua đường thẳng phân giác của góc phần tư thứ nhất

Lời giải

adsense

a) Ta có:  $y = x + m + 1 – \frac{{2m + 1}}{{x + 1}}$
Và     $y’ = 1 + \frac{{2m + 1}}{{{{\left( {x + 1} \right)}^2}}} = \frac{{{{(x + 1)}^2} + (2m + 1)}}{{{{\left( {x + 1} \right)}^2}}}$
Muốn hàm số có cực đại, cực tiểu thì $y’$ triệt tiêu tại hai điểm và đổi dấu qua hai điểm đó $ \Rightarrow 2m + 1
b) Trước hết tìm điều kiện đối với $m$ để đường thẳng $y = – (x + 4)$ cắt đường cong $(1)$ tại hai điểm phân biệt $ \Leftrightarrow $ phương trình :  $\frac{{{x^2} + (m + 2)x – m}}{{x + 1}} = – (x + 4)$ có hai nghiệm phân biệt
$ \Leftrightarrow $ phương trình      $2{x^2} + (m + 7)x + 4 – m = 0$     $(2)$  có hai nghiệm phân biệt $ \ne – 1$
$\Leftrightarrow \left\{ \begin{array}{l}
2.{( – 1)^2} + (m + 7)( – 1) + 4 – m \ne 0\\
\Delta  = {(m + 7)^2} – 8(4 – m) > 0
\end{array} \right.$    $ \Leftrightarrow \left\{ \begin{array}{l}
m \ne  – 1/2\\
{m^2} + 22m = 17 > 0
\end{array} \right.$
$ \Leftrightarrow m   – 11 + \sqrt {104}         {\rm{ (m}} \ne {\rm{ – 1/2)}}$        $(3)$

Gọi ${x_1},{x_2}$ là hoành độ hai giao điểm, ta có ${x_1},{x_2}$ là nghiệm của $(2)$; theo định lý Viet ta có
    $\frac{{{x_1} + {x_2}}}{2} = – \frac{{m + 7}}{4} \Leftrightarrow {x_1} + {x_2} = – \frac{{m + 7}}{2}$
Lại do hai giao điểm đối xứng qua đường phân giác $y = x$ nên tung độ của hai giao điểm lần lượt là ${x_2},{x_1} \Rightarrow {x_2} = – ({x_1} + 4) \Leftrightarrow {x_1} + {x_2} =  – 4$
Từ đó ta có $ – \frac{{m + 7}}{2} = – 4 \Leftrightarrow m = 1$ thỏa mãn $(3)$

Thuộc chủ đề:Bài tập Hàm số Tag với:Cực trị của hàm số

Bài liên quan:

  1. Chứng minh rằng hàm số \(y = {x^4} – 6{x^2} + 4x + 6\) luôn luôn có 3 cực trị đồng thời gốc toạ độ O là trọng tâm của tam giác tạo bởi 3 đỉnh là 3 điểm cực trị của đồ thị hàm số.
  2. Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:

  3. Đề: Cho hàm số: $y = x^4 – 2mx^2 + 2m + m^4$$1.$ Với những giá trị nào của $m$ thì hàm số có cực đại và cực tiểu? Đồng thời các điểm cực đại và cực tiểu lập thành một tam giác đều.$2.$ Khảo sát sự biến thiên và vẽ đồ thị hàm số ứng với $m = 1.$
  4. Đề: Cho hàm:  $y = {x^3} + m{x^2} – 1$a) Chứng minh rằng với mọi $m \ne 0$, hàm số luôn có cực đại và cực tiểu.b) Chứng minh rằng với mọi $m$, phương trình ${x^3} + m{x^2} – 1 = 0$ luôn có một nghiệm dương.c) Xác định $m$ để phương trình ${x^3} + m{x^2} – 1 = 0$ có một nghiệm duy nhất
  5. Đề: Cho hàm số: $y = 2{x^3} – 3(2m + 1){x^2} + 6m(m + 1)x + 1\,\,\,      (1)$$1.$ Khảo sát hàm số $(1)$ khi $m = 1.$$2.$ Chứng minh rằng với mọi $m$, hàm số ($1$) luôn đạt cực trị tại $x_1; x_2$ với $x_2 – x_1$ không phụ thuộc $m.$
  6. Đề: Cho hàm số $y = x^3 + (1 – 2m)x^2 + (2 – m)x + m + 2 (C)$. Tìm m để hàm số có CĐ, CT thỏa mãn $x_{CT} < 2$
  7. Đề: Cho hàm số $y = {x^3} + (1 – 2m){x^2} + (2 – m)x + m + 2\,\,\,\, (C)$. Tìm m để hàm số có CĐ, CT thỏa mãn hoành độ các điểm cực trị lớn hơn -1.
  8. Đề: Xem hàm số: $y = \frac{{{x^2} + m({m^2} – 1)x – {m^4} + 1}}{{x – m}}$a) Chứng minh rằng với mọi giá trị $m$, hàm số luôn có cực đại và cực tiểu.b) Chứng minh rằng trên mặt phẳng tọa độ tồn tại một điểm duy nhất với tính chất: nó là điểm cực đại cả đồ thị ứng với một giá trị nào đó của $m$, và nó là điểm cực tiểu của đồ thị ứng với một giá trị khác của $m$
  9. Đề: Cho hàm số \(y = \frac{{2{m^2}{x^2} + \left( {2 – {m^2}} \right)\left( {mx + 1} \right)}}{{mx + 1}}\,\,\left( 1 \right)\)$1$. Khảo sát và vẽ đồ thị hàm sô trên $m= -2$$2$. Chứng minh  rằng với mọi $m$ \( \ne 0\), hàm số $(1)$ luôn có cực đại và cực tiểu.$3$. Chứng minh với mọi $m$ \( \ne 0\),tiệm cận xiên của đồ thị hàm số $(1)$ luôn tiếp xúc với parabol cố định. Tìm phương trình của parabol đó.
  10. Đề: Cho hàm số       $y = \frac{{2{x^2} – 3x + m}}{{x – m}}$            (1)1)    Xác định tham số $m$ để đồ thị hàm số không có tiệm cận đứng. Vẽ đồ thị hàm số trong trường hợp đó.2) Tìm $m$ để hàm số (1) có cực đại, cực tiểu thỏa mãn điều kiện:  $| {{y_{CD}} – {y_{CT}}} | > 8$3) Giả sử $m \ne 0$ và $m \ne 1$. Chứng minh rằng tiếp tuyến của (1) tại giao điểm của nó với trục tung luôn cắt tiệm cận đứng tại điểm có tung độ bằng 1
  11. Đề: Cho hàm số $y = x^3 – 3x^2 – mx + 2$. Tìm $m$ để hàm số có cực trị và các điểm cực trị cách đều đường thẳng $y = x – 1$
  12. Đề: Cho hàm số:  $y = \frac{{2{x^3}}}{3} + (cos a – 3sin a){x^2} – 8(cos2a + 1)x + 1$  với $a$ là tham số.a) Chứng minh rằng hàm số luôn luôn có cực đại, cực tiểu.b) Giả sử hàm số đạt cực trị tại hai điểm có hoành độ ${x_1},{x_2}$. Chứng minh rằng $x_1^2 + x_2^2 \le 18$ với mọi $a$
  13. Đề: Cho hàm số $f(x) = \frac{1}{3}x^3 – \frac{1}{2}(\sin a + \cos a){x^2} + \frac{3\sin 2a}{4}x$. Tìm a để hàm số đạt cực trị tại $x_1,x_2$ thỏa mãn điều kiện $x_1 + x_2 = x_1^2 + x_2^2$
  14. Đề: Cho hàm số $y = {x^3} + (1 – 2m){x^2} + (2 – m)x + m + 2 (C)$. Tìm $m$ để hàm số có CĐ, CT thỏa mãn $\left| {{x_1} – {x_2}} \right| > \frac{1}{3}$ , với ${x_1};{x_2}$ là hoành độ các điểm cực trị.
  15. Đề: $1.$ Khảo sát sự biến thiên và vẽ đồ thị của hàm số: $y = -x^3 + 3x^2 – 4$$2.$ Với mỗi giá trị của tham số $a$, tìm tọa độ của điểm cực đại và của điểm cực tiểu của đồ thị $C_a$ của hàm số $y = -x^3 + ax^2 – 4$$3.$ Xác định $a$ để mọi đường thẳng có phương trình $y = m$ với $-4 < m < 0$ cắt $C_a$ tại ba điểm phân biệt.

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Bài tập tự luận về hàm số




Booktoan.com (2015 - 2023) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.