• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán, Lý, Hóa, Sinh, Anh, Soạn Văn từ lớp 1 đến lớp 12, Học toán và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Môn Lý
  • Môn Hóa
  • Môn Anh
  • Môn Sinh
  • Môn Văn
Bạn đang ở:Trang chủ / Bài tập Hàm số / Đề: Cho hàm số       $y = \frac{{2{x^2} – 3x + m}}{{x – m}}$            (1)1)    Xác định tham số $m$ để đồ thị hàm số không có tiệm cận đứng. Vẽ đồ thị hàm số trong trường hợp đó.2) Tìm $m$ để hàm số (1) có cực đại, cực tiểu thỏa mãn điều kiện:  $| {{y_{CD}} – {y_{CT}}} | > 8$3) Giả sử $m \ne 0$ và $m \ne 1$. Chứng minh rằng tiếp tuyến của (1) tại giao điểm của nó với trục tung luôn cắt tiệm cận đứng tại điểm có tung độ bằng 1

Đề: Cho hàm số       $y = \frac{{2{x^2} – 3x + m}}{{x – m}}$            (1)1)    Xác định tham số $m$ để đồ thị hàm số không có tiệm cận đứng. Vẽ đồ thị hàm số trong trường hợp đó.2) Tìm $m$ để hàm số (1) có cực đại, cực tiểu thỏa mãn điều kiện:  $| {{y_{CD}} – {y_{CT}}} | > 8$3) Giả sử $m \ne 0$ và $m \ne 1$. Chứng minh rằng tiếp tuyến của (1) tại giao điểm của nó với trục tung luôn cắt tiệm cận đứng tại điểm có tung độ bằng 1

Đăng ngày: 12/03/2020 Biên tâp: admin Để lại bình luận Thuộc chủ đề:Bài tập Hàm số

ham so
Đề bài: Cho hàm số       $y = \frac{{2{x^2} – 3x + m}}{{x – m}}$            (1)1)    Xác định tham số $m$ để đồ thị hàm số không có tiệm cận đứng. Vẽ đồ thị hàm số trong trường hợp đó.2) Tìm $m$ để hàm số (1) có cực đại, cực tiểu thỏa mãn điều kiện:  $| {{y_{CD}} – {y_{CT}}} | > 8$3) Giả sử $m \ne 0$ và $m \ne 1$. Chứng minh rằng tiếp tuyến của (1) tại giao điểm của nó với trục tung luôn cắt tiệm cận đứng tại điểm có tung độ bằng 1

Lời giải

$1)$ Đồ thị hàm số không có tiệm cận đứng khi $x = m$ là nghiệm của tử số trong biểu thức hàm số.
    $ \Leftrightarrow 2{m^2} – 3m + m = 0{\rm{  }} \Leftrightarrow {\rm{m}} = 0,{\rm{ m}} = 1$.
Với $m = 0$ ta có hàm số  $y = 2x – 3{\rm{  (x}} \ne {\rm{0)}}$ ;
Với $m = 1$ ta có hàm số  $y = 2x – 1{\rm{  (x}} \ne {\rm{1)}}$

$2)$ Ta viết lại hàm số dưới dạng  $y = 2x + (2m – 3) + \frac{{2({m^2} – m)}}{{x – m}}$
Và có $y’ = 2 – \frac{{2({m^2} – m)}}{{{{(x – m)}^2}}} = \frac{{2\left[ {{{(x – m)}^2} – ({m^2} – m)} \right]}}{{{{(x – m)}^2}}}$
Để hàm số có cực đại và cực tiểu cần có ${m^2} – m > 0{\rm{  }} \Leftrightarrow {\rm{m}} 1$.
Khi đó hoành độ các điểm cực đại, cực tiểu là ${x_{1,2}} = m \pm \sqrt {{m^2} – m} $ và
$\left| {{y_{cd}} – {y_{ct}}} \right| = \left| {2{x_1} + (2m – 3) + \frac{{2({m^2} – m)}}{{{x_1} – m}}} \right| – \left[ {2{x_2} + (2m – 3) + \frac{{2({m^2} – m)}}{{{x_2} – m}}} \right]$
                  $ = \left| {2({x_1} – {x_2}) + 2({m^2} – m)\left( {\frac{1}{{\sqrt {{m^2} – m} }} + \frac{1}{{\sqrt {{m^2} – m} }}} \right)} \right|$
                  $ = \left| {4\sqrt {{m^2} – m}  + \frac{{4({m^2} – m)}}{{\sqrt {{m^2} – m} }}} \right| = \frac{{8({m^2} – m)}}{{\sqrt {{m^2} – m} }} > 8$
$ \Leftrightarrow {m^2} – m > \sqrt {{m^2} – m} {\rm{ }} \Leftrightarrow \sqrt {{m^2} – m} \left( {\sqrt {{m^2} – m}  – 1} \right) > 0$
$ \Leftrightarrow \sqrt {{m^2} – m}  > 1{\rm{ }} \Leftrightarrow {{\rm{m}}^2} – m – 1 > 0$
$ \Leftrightarrow m \frac{{1 + \sqrt 5 }}{2}$
Đáp số : $m \frac{{1 + \sqrt 5 }}{2}$

$3)$ Với $m \ne 0 ; 1$: Đồ thị hàm số có tiệm cận đứng $x = m$, cắt trục tung tại điểm $(0{\rm{ ; }} – {\rm{1)}}$, do đó có phương trình tiếp tuyến tại $(0{\rm{ ; }} – {\rm{1)}}$ là:
    $y + 1 = y'(0)x = \frac{{2x}}{m}{\rm{ }} \Leftrightarrow {\rm{y}} = \frac{{2x}}{m} – 1$
Với $x = m$ ta có ${\rm{y}} = \frac{{2x}}{m} – 1 = 1$. Đó là điều cần chứng minh

Tag với:Cực trị của hàm số

Bài liên quan:

  • Đề: Cho hàm số: $y = x^4 – 2mx^2 + 2m + m^4$$1.$ Với những giá trị nào của $m$ thì hàm số có cực đại và cực tiểu? Đồng thời các điểm cực đại và cực tiểu lập thành một tam giác đều.$2.$ Khảo sát sự biến thiên và vẽ đồ thị hàm số ứng với $m = 1.$
  • Đề: Cho hàm:  $y = {x^3} + m{x^2} – 1$a) Chứng minh rằng với mọi $m \ne 0$, hàm số luôn có cực đại và cực tiểu.b) Chứng minh rằng với mọi $m$, phương trình ${x^3} + m{x^2} – 1 = 0$ luôn có một nghiệm dương.c) Xác định $m$ để phương trình ${x^3} + m{x^2} – 1 = 0$ có một nghiệm duy nhất
  • Đề: Cho hàm số: $y = 2{x^3} – 3(2m + 1){x^2} + 6m(m + 1)x + 1\,\,\,      (1)$$1.$ Khảo sát hàm số $(1)$ khi $m = 1.$$2.$ Chứng minh rằng với mọi $m$, hàm số ($1$) luôn đạt cực trị tại $x_1; x_2$ với $x_2 – x_1$ không phụ thuộc $m.$
  • Đề: Cho hàm số $y = x^3 + (1 – 2m)x^2 + (2 – m)x + m + 2 (C)$. Tìm m để hàm số có CĐ, CT thỏa mãn $x_{CT} < 2$
  • Đề: Cho hàm số: $y = \frac{{{x^2} + (m + 2)x – m}}{{x + 1}}$                (1)a) Với giá trị nào của $m$, hàm số (1) có cực đại, cực tiểu?b) Xác định giá trị của $m$ để cho đường thẳng $y =  – (x + 4)$ cắt đường cong (1) tại hai điểm đối xứng nhau qua đường thẳng phân giác của góc phần tư thứ nhất
  • Đề: Cho hàm số $y = {x^3} + (1 – 2m){x^2} + (2 – m)x + m + 2\,\,\,\, (C)$. Tìm m để hàm số có CĐ, CT thỏa mãn hoành độ các điểm cực trị lớn hơn -1.
  • Đề: Xem hàm số: $y = \frac{{{x^2} + m({m^2} – 1)x – {m^4} + 1}}{{x – m}}$a) Chứng minh rằng với mọi giá trị $m$, hàm số luôn có cực đại và cực tiểu.b) Chứng minh rằng trên mặt phẳng tọa độ tồn tại một điểm duy nhất với tính chất: nó là điểm cực đại cả đồ thị ứng với một giá trị nào đó của $m$, và nó là điểm cực tiểu của đồ thị ứng với một giá trị khác của $m$
  • Đề: Cho hàm số \(y = \frac{{2{m^2}{x^2} + \left( {2 – {m^2}} \right)\left( {mx + 1} \right)}}{{mx + 1}}\,\,\left( 1 \right)\)$1$. Khảo sát và vẽ đồ thị hàm sô trên $m= -2$$2$. Chứng minh  rằng với mọi $m$ \( \ne 0\), hàm số $(1)$ luôn có cực đại và cực tiểu.$3$. Chứng minh với mọi $m$ \( \ne 0\),tiệm cận xiên của đồ thị hàm số $(1)$ luôn tiếp xúc với parabol cố định. Tìm phương trình của parabol đó.
  • Đề: Cho hàm số $y = x^3 – 3x^2 – mx + 2$. Tìm $m$ để hàm số có cực trị và các điểm cực trị cách đều đường thẳng $y = x – 1$
  • Đề: Cho hàm số:  $y = \frac{{2{x^3}}}{3} + (cos a – 3sin a){x^2} – 8(cos2a + 1)x + 1$  với $a$ là tham số.a) Chứng minh rằng hàm số luôn luôn có cực đại, cực tiểu.b) Giả sử hàm số đạt cực trị tại hai điểm có hoành độ ${x_1},{x_2}$. Chứng minh rằng $x_1^2 + x_2^2 \le 18$ với mọi $a$
  • Đề: Cho hàm số $f(x) = \frac{1}{3}x^3 – \frac{1}{2}(\sin a + \cos a){x^2} + \frac{3\sin 2a}{4}x$. Tìm a để hàm số đạt cực trị tại $x_1,x_2$ thỏa mãn điều kiện $x_1 + x_2 = x_1^2 + x_2^2$
  • Đề: Cho hàm số $y = {x^3} + (1 – 2m){x^2} + (2 – m)x + m + 2 (C)$. Tìm $m$ để hàm số có CĐ, CT thỏa mãn $\left| {{x_1} – {x_2}} \right| > \frac{1}{3}$ , với ${x_1};{x_2}$ là hoành độ các điểm cực trị.

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Bài tập tự luận về hàm số




Booktoan.com (2015 - 2021) Học Toán online - Giải bài tập môn Toán, Lý, Hóa, Sinh, Anh, Soạn Văn, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.