• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Blog / Cho hình chóp tam giác đều \(S.ABC\) có cạnh đáy bằng \(2a\), khoảng cách từ tâm \(O\) của đường tròn ngoại tiếp tam giác đáy \(ABC\) đến một mặt bên là \(\frac{a}{2}\). Thể tích của khối nón ngoại tiếp hình chóp \(S.ABC\) bằng

Cho hình chóp tam giác đều \(S.ABC\) có cạnh đáy bằng \(2a\), khoảng cách từ tâm \(O\) của đường tròn ngoại tiếp tam giác đáy \(ABC\) đến một mặt bên là \(\frac{a}{2}\). Thể tích của khối nón ngoại tiếp hình chóp \(S.ABC\) bằng

Ngày 04/08/2021 Thuộc chủ đề:Blog, Trắc nghiệm Khối đa diện Tag với:TN THPT 2021, Trắc nghiệm thể tích hình chóp

Câu hỏi: Cho hình chóp tam giác đều \(S.ABC\) có cạnh đáy bằng \(2a\), khoảng cách từ tâm \(O\) của đường tròn ngoại tiếp tam giác đáy \(ABC\) đến một mặt bên là \(\frac{a}{2}\). Thể tích của khối nón ngoại tiếp hình chóp \(S.ABC\) bằng

A. \(\frac{{2\pi {a^3}}}{3}\).

B. \(\frac{{4\pi {a^3}}}{9}\).

C. \(\frac{{4\pi {a^3}}}{3}\).

D. \(\frac{{4\pi {a^3}}}{{27}}\).

LỜI GIẢI CHI TIẾT

Cho hình chóp tam giác đều (S.ABC) có cạnh đáy bằng (2a), khoảng cách từ tâm (O) của đường tròn ngoại tiếp tam giác đáy (ABC) đến một mặt bên là (frac{a}{2}). Thể tích của khối nón ngoại tiếp hình chóp (S.ABC) bằng</p> 1

Gọi \(E\) là trung điểm của \(BC\), suy ra \(BC \bot OE\).

Dựng \(OH \bot SE\) tại \(H\).

Ta có \(\left\{ \begin{array}{l}BC \bot OE\\BC \bot SO\end{array} \right. \Rightarrow BC \bot \left( {SOE} \right) \Rightarrow BC \bot OH\).

Khi đó \(\left\{ \begin{array}{l}OH \bot BC\\OH \bot SE\end{array} \right. \Rightarrow OH \bot \left( {SBC} \right)\), suy ra \(OH = d\left( {O\,,\,\left( {SBC} \right)} \right) = \frac{a}{2}\).

Vì tam giác đều \(ABC\) cạnh \(2a\) nên \(AE = 2a.\frac{{\sqrt 3 }}{2} = a\sqrt 3 \).

Suy ra \(OA = \frac{2}{3}AE = \frac{{2a\sqrt 3 }}{3}\) và \(OE = \frac{1}{3}AE = \frac{{a\sqrt 3 }}{3}\).

Trong tam giác vuông \(SOE,\) ta có

\(\frac{1}{{O{H^2}}} = \frac{1}{{O{E^2}}} + \frac{1}{{S{O^2}}} \Rightarrow \frac{1}{{S{O^2}}} = \frac{1}{{O{H^2}}} – \frac{1}{{O{E^2}}} = \frac{1}{{{a^2}}} \Rightarrow SO = a.\)

Khối nón ngoại tiếp hình chóp \(S.ABC\) có bán kính đáy \(R = OA = \frac{{2a\sqrt 3 }}{3}\), đường cao \(h = SO = a\).

Vậy thể tích khối nón: \(V = \frac{1}{3}\pi {R^2}.h = \frac{1}{3}\pi {\left( {\frac{{2a\sqrt 3 }}{3}} \right)^2}.a = \frac{{4\pi {a^3}}}{9}\).

=======

Bài liên quan:

  1. Cắt hình trụ \((T)\) bởi mặt phẳng song song với trục và cách trục một khoảng bằng \(2a\) , ta được thiết diện là một hình vuông có diện tích bẳng \(16{a^2}\) . Diện tích xung quanh của \((T)\) bằng

  2. Cho khối lăng trụ tam giác đều \(ABC.A’B’C’\) có cạnh bên bằng \(2a\) , góc giữa hai mặt phẳng \(\left( {A’BC} \right)\) và \(\left( {ABC} \right)\) bằng
  3. Trong không gian \(Oxyz\) cho điểm \(A\left( {1;1;1} \right)\) và đường thẳng \(d:\frac{{x – 1}}{1} = \frac{y}{2} = \frac{{z + 1}}{1}\) . Đường thẳng đi qua \(A\) , cắt trục \(Oy\) và vuông góc với \(d\) có phương trình là

  4. Cho hàm số \(f\left( x \right) = a{x^4} + b{x^3} + c{x^2}\left( {a,b,c \in \mathbb{R}} \right).\) Hàm số \(y = f’\left( x \right)\) có đồ thị như trong hình bên. Số nghiệm thực phân biệt của phương trình \(2f\left( x \right) + 3 = 0\)

  5. Có bao nhiêu số nguyên \(x\) thỏa mãn \(\left[ {{{\log }_2}\left( {{x^2} + 1} \right) – {{\log }_2}\left( {x + 21} \right)} \right]\left( {16 – {2^{x – 1}}} \right) \ge 0\) ?

  6. Cho hàm số \(f\left( x \right) = {x^4} – 10{x^3} + 24{x^2} + \left( {4 – m} \right)x\) , với \(m\) là tham số thực. Có bao nhiêu giá trị nguyên của \(m\) để hàm số \(g\left( x \right) = f\left( {\left| x \right|} \right)\) có đúng \(7\) điểm cực trị.

  7. Cho hai hàm số \(f(x) = a{x^4} + b{x^3} + c{x^2} + x\) và \(g(x) = m{x^3} + n{x^2} – 2x\) ; với \(a,b,c,m,n \in \mathbb{R}\) . Biết hàm số \(y = f(x) – g(x)\) có ba điểm cực trị là \( – 1,2\) và 3. Diện tích hình phẳng giới hạn bởi hai đương \(y = f'(x)\) và \(y = g'(x)\) bằng

  8. Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { – 1;6} \right]\) và có đồ thị là đường gấp khúc \(ABC\) trong hình bên. Biết \(F\) là nguyên hàm của \(f\) thỏa mãn \(F\left( { – 1} \right) =  – 1\) . Giá trị của \(F\left( 5 \right) + F\left( 6 \right)\) bằng 

  9. Có bao nhiêu số nguyên dương y sao cho tồn tại số thực \(x \in \left( {1;\,6} \right)\) thỏa mãn \(4\left( {x – 1} \right){e^x} = y\left( {{e^x} + xy – 2{x^2} – 3} \right)\) ?
  10. Trong không gian \(Oxyz\) cho mặt cầu \((S):{(x – 2)^2} + {(y – 3)^2} + {(z + 1)^2} = 1\) . Có bao nhiêu điểm \(M\) thuộc \((S)\) sao cho tiếp diện của \((S)\) tại \(M\) cắt các trục \(Ox,\,Oy\) lần lượt tại các điềm \(A(a;\,\,0;\,\,0),B(0;\,\,b;\,\,0)\) mà \(a,b\) là các số nguyên dương và \(\widehat {AMB} = {90^ \circ }\) .
  11. Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và có đồ thị là đường cong như hình vẽ. 

    Đặt \(g\left( x \right) = 3f\left( {f\left( x \right)} \right) + 4\). Số điểm cực trị của hàm số \(g\left( x \right)\) là

  12. Cho hàm số \(y = f(x)\) xác định liên tục trên \(\mathbb{R}\) có đồ thị như hình vẽ bên.

    Số nghiệm thuộc đoạn \(\left[ {0;4} \right]\) của phương trình \(\left| {f({x^2} – 2x)} \right| = 2\) là

  13. Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị như hình vẽ dưới đây.

    Số điểm cực trị của hàm số \(g\left( x \right) = f\left( {2{x^3} + 3{x^2}} \right)\) là

  14. [SỞ BN L1] Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ.
  15. [KIM THANH HẢI DƯƠNG 2020] Cho hàm số \(y = f\left( x \right)\)có bảng biến thiên sau

    Số nghiệm thực của phương trình \(5f\left( {1 – 2x} \right) + 1 = 0\)

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Sách Giáo Khoa lớp 11
  • Sách Giáo Khoa lớp 7
  • Sách Giáo Khoa lớp 2
  • Sách Giáo Khoa lớp 6
  • Sách Giáo Khoa lớp 12
  • Sách Giáo Khoa lớp 9
  • Sách Giáo Khoa lớp 5

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.