• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Blog

Cho hàm số \(y = f\left( x \right)\) có đồ thị là đường cong trong hình vẽ bên. Số nghiệm thực phân biệt của phương trình \(f\left( {{e^{f\left( x \right)}} + f\left( x \right)} \right) = 1\) là

Ngày 03/08/2021 Thuộc chủ đề:Blog, Trắc nghiệm Cực trị của hàm số Tag với:TN THPT 2021, Trắc nghiệm cực trị Vận dụng

Câu hỏi: Cho hàm số \(y = f\left( x \right)\) có đồ thị là đường cong trong hình vẽ bên. Số nghiệm thực phân biệt của phương trình \(f\left( {{e^{f\left( x \right)}} + f\left( x \right)} \right) = 1\) là A. \(8\). B. \(6\). C. \(4\). D. \(2\). LỜI GIẢI CHI TIẾT Ta có\(f\left( {{e^{f\left( x \right)}} + f\left( x \right)} \right) = 1 \Leftrightarrow … [Đọc thêm...] vềCho hàm số \(y = f\left( x \right)\) có đồ thị là đường cong trong hình vẽ bên. Số nghiệm thực phân biệt của phương trình \(f\left( {{e^{f\left( x \right)}} + f\left( x \right)} \right) = 1\) là

Trong không gian Oxyz cho đường thẳng \(d:\,\,\frac{{x – 1}}{1} = \frac{{y + 1}}{{ – 1}} = \frac{{z – 5}}{2}\) và mặt phẳng\(\left( P \right):\,\,2x + y + z – 3 = 0\). Đường thẳng \(\Delta \) đi qua điểm \(A\left( {2; – 1;3} \right)\), cắt đường thẳng \(d\) và tạo với mặt phẳng \(\left( P \right)\) góc \({30^0}\) có phương trình:

Ngày 03/08/2021 Thuộc chủ đề:Blog, Trắc nghiệm Xác định điểm thỏa điều kiện cho trước Tag với:Cuc tri Hinh hoc Oxyz, TN THPT 2021

Câu hỏi: Trong không gian Oxyz cho đường thẳng \(d:\,\,\frac{{x - 1}}{1} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 5}}{2}\) và mặt phẳng\(\left( P \right):\,\,2x + y + z - 3 = 0\). Đường thẳng \(\Delta \) đi qua điểm \(A\left( {2; - 1;3} \right)\), cắt đường thẳng \(d\) và tạo với mặt phẳng \(\left( P \right)\) góc \({30^0}\) có phương trình: A. \(\frac{{x + 2}}{{22}} = … [Đọc thêm...] vềTrong không gian Oxyz cho đường thẳng \(d:\,\,\frac{{x – 1}}{1} = \frac{{y + 1}}{{ – 1}} = \frac{{z – 5}}{2}\) và mặt phẳng\(\left( P \right):\,\,2x + y + z – 3 = 0\). Đường thẳng \(\Delta \) đi qua điểm \(A\left( {2; – 1;3} \right)\), cắt đường thẳng \(d\) và tạo với mặt phẳng \(\left( P \right)\) góc \({30^0}\) có phương trình:

Cho hàm số \(f\left( x \right)\) thỏa mãn \( – xf’\left( x \right).\ln x + f\left( x \right) = 2{x^2}{f^2}\left( x \right),\,\,\forall x \in \left( {1; + \infty } \right)\), \(f\left( x \right) > 0,\forall x \in \left( {1; + \infty } \right)\)và \(f\left( {\rm{e}} \right) = \frac{1}{{{{\rm{e}}^2}}}\). Tính diện tích \(S\)hình phẳng giới hạn bởi đồ thị \(y = xf\left( x \right),y = 0,x = e,x = {e^2}\).

Ngày 03/08/2021 Thuộc chủ đề:Blog, Trắc nghiệm Ứng dụng Tích phân Tag với:TN THPT 2021, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng

Câu hỏi: Cho hàm số \(f\left( x \right)\) thỏa mãn \( - xf'\left( x \right).\ln x + f\left( x \right) = 2{x^2}{f^2}\left( x \right),\,\,\forall x \in \left( {1; + \infty } \right)\), \(f\left( x \right) > 0,\forall x \in \left( {1; + \infty } \right)\)và \(f\left( {\rm{e}} \right) = \frac{1}{{{{\rm{e}}^2}}}\). Tính diện tích \(S\)hình phẳng giới hạn bởi đồ thị \(y = … [Đọc thêm...] vềCho hàm số \(f\left( x \right)\) thỏa mãn \( – xf’\left( x \right).\ln x + f\left( x \right) = 2{x^2}{f^2}\left( x \right),\,\,\forall x \in \left( {1; + \infty } \right)\), \(f\left( x \right) > 0,\forall x \in \left( {1; + \infty } \right)\)và \(f\left( {\rm{e}} \right) = \frac{1}{{{{\rm{e}}^2}}}\). Tính diện tích \(S\)hình phẳng giới hạn bởi đồ thị \(y = xf\left( x \right),y = 0,x = e,x = {e^2}\).

Cho hàm số \(y = f(x)\) có đạo hàm \(f’\left( x \right) = {\left( {x – 1} \right)^3}\left[ {{x^2} + \left( {1 – 3m} \right)x + 2{m^2} – 2m} \right]\), \(\forall x \in \mathbb{R}\). Có bao nhiêu giá trị của tham số \(m \in [ – 5;5]\) để hàm số \(g\left( x \right) = f\left( {\left| x \right| + m} \right)\) có tối thiểu 3 cực trị.

Ngày 03/08/2021 Thuộc chủ đề:Blog, Trắc nghiệm Cực trị của hàm số Tag với:TN THPT 2021, Trắc nghiệm cực trị Vận dụng

Câu hỏi: Cho hàm số \(y = f(x)\) có đạo hàm \(f'\left( x \right) = {\left( {x - 1} \right)^3}\left[ {{x^2} + \left( {1 - 3m} \right)x + 2{m^2} - 2m} \right]\), \(\forall x \in \mathbb{R}\). Có bao nhiêu giá trị của tham số \(m \in [ - 5;5]\) để hàm số \(g\left( x \right) = f\left( {\left| x \right| + m} \right)\) có tối thiểu 3 cực trị. A. \(8.\) B. \(9.\) C. … [Đọc thêm...] vềCho hàm số \(y = f(x)\) có đạo hàm \(f’\left( x \right) = {\left( {x – 1} \right)^3}\left[ {{x^2} + \left( {1 – 3m} \right)x + 2{m^2} – 2m} \right]\), \(\forall x \in \mathbb{R}\). Có bao nhiêu giá trị của tham số \(m \in [ – 5;5]\) để hàm số \(g\left( x \right) = f\left( {\left| x \right| + m} \right)\) có tối thiểu 3 cực trị.

Có bao nhiêu giá trị nguyên dương của \(y\) để tồn tại số thực \(x > 1\) thỏa mãn phương trình \(\left( {{x^2}y – 8x + y – 3} \right){\log _9}y = {\log _3}\frac{{\sqrt {8x – y + 4} }}{x}\)?

Ngày 03/08/2021 Thuộc chủ đề:Blog, Trắc nghiệm Logarit và hàm số lôgarit Tag với:Phuong trinh logarit co nghiem, Phuong trinh mu - logarit co nghiem, TN THPT 2021

Câu hỏi: Có bao nhiêu giá trị nguyên dương của \(y\) để tồn tại số thực \(x > 1\) thỏa mãn phương trình \(\left( {{x^2}y - 8x + y - 3} \right){\log _9}y = {\log _3}\frac{{\sqrt {8x - y + 4} }}{x}\)? A. \(5\). B. \(4\). C. \(3\). D. \(6\). LỜI GIẢI CHI TIẾT \(\left( {{x^2}y - 8x + y - 3} \right){\log _9}y = {\log _3}\frac{{\sqrt {8x - y + 4} … [Đọc thêm...] vềCó bao nhiêu giá trị nguyên dương của \(y\) để tồn tại số thực \(x > 1\) thỏa mãn phương trình \(\left( {{x^2}y – 8x + y – 3} \right){\log _9}y = {\log _3}\frac{{\sqrt {8x – y + 4} }}{x}\)?

Cho hình trụ tròn xoay có hai đáy là hai hình tròn \(\left( {O\,;\,3} \right)\) và \(\left( {O’\,;\,3} \right)\). Biết rằng tồn tại dây cung \(AB\) thuộc đường tròn \(\left( O \right)\) sao cho \(\Delta O’AB\) là tam giác đều và mặt phẳng \(\left( {O’AB} \right)\) hợp với mặt phẳng chứa đường tròn \(\left( O \right)\) một góc \(60^\circ \). Tính diện tích xung quanh \({S_{xq}}\) của hình nón có đỉnh \(O’\), đáy là hình tròn\(\left( {O\,;\,3} \right)\).

Ngày 03/08/2021 Thuộc chủ đề:Blog, Trắc nghiệm Ứng dụng Tích phân Tag với:TN THPT 2021, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng

Câu hỏi: Cho hình trụ tròn xoay có hai đáy là hai hình tròn \(\left( {O\,;\,3} \right)\) và \(\left( {O'\,;\,3} \right)\). Biết rằng tồn tại dây cung \(AB\) thuộc đường tròn \(\left( O \right)\) sao cho \(\Delta O'AB\) là tam giác đều và mặt phẳng \(\left( {O'AB} \right)\) hợp với mặt phẳng chứa đường tròn \(\left( O \right)\) một góc \(60^\circ \). Tính diện tích xung quanh … [Đọc thêm...] vềCho hình trụ tròn xoay có hai đáy là hai hình tròn \(\left( {O\,;\,3} \right)\) và \(\left( {O’\,;\,3} \right)\). Biết rằng tồn tại dây cung \(AB\) thuộc đường tròn \(\left( O \right)\) sao cho \(\Delta O’AB\) là tam giác đều và mặt phẳng \(\left( {O’AB} \right)\) hợp với mặt phẳng chứa đường tròn \(\left( O \right)\) một góc \(60^\circ \). Tính diện tích xung quanh \({S_{xq}}\) của hình nón có đỉnh \(O’\), đáy là hình tròn\(\left( {O\,;\,3} \right)\).

Cắt hình nón \(\left( N \right)\) bởi mặt phẳng đi qua đỉnh và tạo với mặt phẳng chứa đáy một góc bằng \({45^ \circ }\) ta được thiết diện là tam giác đều cạnh \(a\). Diện tích xung quanh của \(\left( N \right)\) bằng

Ngày 02/08/2021 Thuộc chủ đề:Blog, Trắc nghiệm Ứng dụng Tích phân Tag với:TN THPT 2021, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng

Câu hỏi: Cắt hình nón \(\left( N \right)\) bởi mặt phẳng đi qua đỉnh và tạo với mặt phẳng chứa đáy một góc bằng \({45^ \circ }\) ta được thiết diện là tam giác đều cạnh \(a\). Diện tích xung quanh của \(\left( N \right)\) bằng A. \(\frac{{\sqrt {10} \pi {a^2}}}{2}\). B. \(\sqrt {10} \pi {a^2}\). C. \(\frac{{\sqrt {10} \pi {a^2}}}{4}\). D. \(4\sqrt 5 \pi … [Đọc thêm...] vềCắt hình nón \(\left( N \right)\) bởi mặt phẳng đi qua đỉnh và tạo với mặt phẳng chứa đáy một góc bằng \({45^ \circ }\) ta được thiết diện là tam giác đều cạnh \(a\). Diện tích xung quanh của \(\left( N \right)\) bằng

Bất phương trình \(\log _2^2x + {\log _3}\frac{6}{x} \le \left( {1 + {{\log }_3}\frac{6}{x}} \right){\log _2}x\) có số nghiệm nguyên dương là

Ngày 02/08/2021 Thuộc chủ đề:Blog, Trắc nghiệm Logarit và hàm số lôgarit Tag với:Phuong trinh logarit co nghiem, Phuong trinh mu - logarit co nghiem, TN THPT 2021

Câu hỏi: Bất phương trình \(\log _2^2x + {\log _3}\frac{6}{x} \le \left( {1 + {{\log }_3}\frac{6}{x}} \right){\log _2}x\) có số nghiệm nguyên dương là A. vô nghiệm. B. 1 nghiệm. C. 2 nghiệm. D. 3 nghiệm. LỜI GIẢI CHI TIẾT Điều kiện: \(x > 0.\) BPT đã cho \( \Leftrightarrow \)\(\log _2^2x + {\log _3}\frac{6}{x} - {\log _2}x - {\log _2}x.{\log … [Đọc thêm...] vềBất phương trình \(\log _2^2x + {\log _3}\frac{6}{x} \le \left( {1 + {{\log }_3}\frac{6}{x}} \right){\log _2}x\) có số nghiệm nguyên dương là

Cho hàm số \(y\, = \,f\left( x \right)\) có đạo hàm \(f’\left( x \right)\, = \,12x\left( {{x^2}\, – \,x\, – \,2} \right)\). Có bao nhiêu giá trị nguyên của tham số \(m \in \left( { – \,10\,;\,10} \right)\) để hàm số \(y\, = \,f\left( {\left| x \right|\, + \,m} \right)\) có \(7\) điểm cực trị?

Ngày 02/08/2021 Thuộc chủ đề:Blog, Trắc nghiệm Cực trị của hàm số Tag với:TN THPT 2021, Trắc nghiệm cực trị Vận dụng

Câu hỏi: Cho hàm số \(y\, = \,f\left( x \right)\) có đạo hàm \(f'\left( x \right)\, = \,12x\left( {{x^2}\, - \,x\, - \,2} \right)\). Có bao nhiêu giá trị nguyên của tham số \(m \in \left( { - \,10\,;\,10} \right)\) để hàm số \(y\, = \,f\left( {\left| x \right|\, + \,m} \right)\) có \(7\) điểm cực trị? A. 8. B. \(9\). C. \(10\). D. \(11\). LỜI GIẢI CHI TIẾT … [Đọc thêm...] vềCho hàm số \(y\, = \,f\left( x \right)\) có đạo hàm \(f’\left( x \right)\, = \,12x\left( {{x^2}\, – \,x\, – \,2} \right)\). Có bao nhiêu giá trị nguyên của tham số \(m \in \left( { – \,10\,;\,10} \right)\) để hàm số \(y\, = \,f\left( {\left| x \right|\, + \,m} \right)\) có \(7\) điểm cực trị?

Trong không gian \(Oxyz\), cho \(\overrightarrow u = \left( {1; – 1;0} \right)\) và hai điểm\(P\left( { – 4;7;3} \right),\,Q\left( {4;4;5} \right)\). Giả sử \(A,\,B\)là hai điểm thay đổi trong mặt phẳng \(\left( {Oxy} \right)\) sao cho \(\overrightarrow {AB} \) cùng hướng với \(\overrightarrow u \) và \(AB = 5\sqrt 2 \). Giá trị lớn nhất của \(\left| {PA – QB} \right|\) bằng

Ngày 02/08/2021 Thuộc chủ đề:Blog, Trắc nghiệm Xác định điểm thỏa điều kiện cho trước Tag với:Cuc tri Hinh hoc Oxyz, TN THPT 2021

Câu hỏi: Trong không gian \(Oxyz\), cho \(\overrightarrow u = \left( {1; - 1;0} \right)\) và hai điểm\(P\left( { - 4;7;3} \right),\,Q\left( {4;4;5} \right)\). Giả sử \(A,\,B\)là hai điểm thay đổi trong mặt phẳng \(\left( {Oxy} \right)\) sao cho \(\overrightarrow {AB} \) cùng hướng với \(\overrightarrow u \) và \(AB = 5\sqrt 2 \). Giá trị lớn nhất của \(\left| {PA - QB} … [Đọc thêm...] vềTrong không gian \(Oxyz\), cho \(\overrightarrow u = \left( {1; – 1;0} \right)\) và hai điểm\(P\left( { – 4;7;3} \right),\,Q\left( {4;4;5} \right)\). Giả sử \(A,\,B\)là hai điểm thay đổi trong mặt phẳng \(\left( {Oxy} \right)\) sao cho \(\overrightarrow {AB} \) cùng hướng với \(\overrightarrow u \) và \(AB = 5\sqrt 2 \). Giá trị lớn nhất của \(\left| {PA – QB} \right|\) bằng

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 8
  • Trang 9
  • Trang 10
  • Trang 11
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.