Đề bài: Cho $a,b,c \in [\frac{1}{2},2]$.Chứng minh rằng:$\left ( a+b+c \right )\left ( \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right )\leq \frac{225}{16}$ Lời giải Đề bài: Cho $a,b,c \in [\frac{1}{2},2]$.Chứng minh rằng:$\left ( a+b+c \right )\left ( \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right )\leq \frac{225}{16}$ Lời giải … [Đọc thêm...] vềĐề bài: Cho $a,b,c \in [\frac{1}{2},2]$.Chứng minh rằng:$\left ( a+b+c \right )\left ( \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right )\leq \frac{225}{16}$
Bất đẳng thức - Bài tập tự luận
Đề bài: $\alpha ,\beta , \gamma $ là 3 góc dương thỏa mãn điều kiện $\alpha + \beta + \gamma = \frac{\pi }{2}$Tìm giá trị lớn nhất của biểu thức: $g = \sqrt {1 + \tan\alpha \tan\beta } + \sqrt {1 + \tan\beta \tan\gamma } + \sqrt {1 + \tan\gamma \tan\alpha } $
Đề bài: $\alpha ,\beta , \gamma $ là 3 góc dương thỏa mãn điều kiện $\alpha + \beta + \gamma = \frac{\pi }{2}$Tìm giá trị lớn nhất của biểu thức: $g = \sqrt {1 + \tan\alpha \tan\beta } + \sqrt {1 + \tan\beta \tan\gamma } + \sqrt {1 + \tan\gamma \tan\alpha } $ Lời giải Đề bài: $\alpha ,\beta , \gamma $ là 3 góc dương thỏa mãn điều kiện $\alpha + \beta … [Đọc thêm...] vềĐề bài: $\alpha ,\beta , \gamma $ là 3 góc dương thỏa mãn điều kiện $\alpha + \beta + \gamma = \frac{\pi }{2}$Tìm giá trị lớn nhất của biểu thức: $g = \sqrt {1 + \tan\alpha \tan\beta } + \sqrt {1 + \tan\beta \tan\gamma } + \sqrt {1 + \tan\gamma \tan\alpha } $
Đề bài: Cho:$x^{2}+y^{2}=u^{2}+v^{2}=1$.Chứng minh rằng:$-\sqrt{2}\leq x(u+v)+y(u-v)\leq \sqrt{2}$
Đề bài: Cho:$x^{2}+y^{2}=u^{2}+v^{2}=1$.Chứng minh rằng:$-\sqrt{2}\leq x(u+v)+y(u-v)\leq \sqrt{2}$ Lời giải Đề bài: Cho:$x^{2}+y^{2}=u^{2}+v^{2}=1$.Chứng minh rằng:$-\sqrt{2}\leq x(u+v)+y(u-v)\leq \sqrt{2}$ Lời giải Theo BĐT Bunhiacopski:$|x(u+v)+y(u-v)|\leq … [Đọc thêm...] vềĐề bài: Cho:$x^{2}+y^{2}=u^{2}+v^{2}=1$.Chứng minh rằng:$-\sqrt{2}\leq x(u+v)+y(u-v)\leq \sqrt{2}$
Đề bài: Cho $a
Đề bài: Cho $a Lời giải Đề bài: Cho $a Lời giải Theo BĐT Bunhiacopski:$c=ax+by \leq \sqrt{a^{2}+b^{2}}\sqrt{x^{2}+y^{2}}=c\sqrt{x^{2}+y^{2}}$(vì: $a^{2}+b^{2}=c^{2} $ do $\Delta ABC $ vuông tại A)$\Rightarrow x^{2}+y^{2} \geq 1 $$\Rightarrow $ (ĐPCM) ========= Chuyên mục: Bất đẳng thức … [Đọc thêm...] vềĐề bài: Cho $a
Đề bài: Chứng minh rằng $\sqrt{t}>\ln \sqrt{t}$ với $t>0$
Đề bài: Chứng minh rằng $\sqrt{t}>\ln \sqrt{t}$ với $t>0$ Lời giải Đề bài: Chứng minh rằng $\sqrt{t}>\ln \sqrt{t}$ với $t>0$ Lời giải Xét hàm số $g(t)=\sqrt{t }-\ln t$ trên khoảng $(0;+\infty )$Ta có $g'(t)=\frac{1}{2\sqrt{ t} }-\frac{1}{t}=\frac{\sqrt{ t}-2 }{2t}$Lập bảng biến thiên ta … [Đọc thêm...] vềĐề bài: Chứng minh rằng $\sqrt{t}>\ln \sqrt{t}$ với $t>0$
Đề bài: Chứng minh rằng nếu $0
Đề bài: Chứng minh rằng nếu $0 Lời giải Đề bài: Chứng minh rằng nếu $0 Lời giải Bất đẳng thức cần chứng minh có dạng: $\frac{1}{a}Xét hàm số $f(x)=\ln x$ với $x>0$. Hàm số này liên tục và có đạo hàm $f'(x)=\frac{1}{x} $ trên $(0;+\infty )$. Xét trên đoạn $[b;a]$, theo định lí La-grăng.$\exists … [Đọc thêm...] vềĐề bài: Chứng minh rằng nếu $0
Đề bài: Chứng minh rằng : $ \frac{2}{3} < \frac{1}{\sqrt{n^3} }\sum\limits_{k = 1}^n {\sqrt k } < \frac{2}{3}\sqrt{\left ( \frac{n+1}{n} \right )^3 }- \frac{2}{3\sqrt{n^3} }, \forall n \in N$
Đề bài: Chứng minh rằng : $ \frac{2}{3} < \frac{1}{\sqrt{n^3} }\sum\limits_{k = 1}^n {\sqrt k } < \frac{2}{3}\sqrt{\left ( \frac{n+1}{n} \right )^3 }- \frac{2}{3\sqrt{n^3} }, \forall n \in N$ Lời giải Đề bài: Chứng minh rằng : $ \frac{2}{3} < \frac{1}{\sqrt{n^3} }\sum\limits_{k = 1}^n {\sqrt k } < \frac{2}{3}\sqrt{\left ( \frac{n+1}{n} \right )^3 }- … [Đọc thêm...] vềĐề bài: Chứng minh rằng : $ \frac{2}{3} < \frac{1}{\sqrt{n^3} }\sum\limits_{k = 1}^n {\sqrt k } < \frac{2}{3}\sqrt{\left ( \frac{n+1}{n} \right )^3 }- \frac{2}{3\sqrt{n^3} }, \forall n \in N$
Đề bài: Cho $A=2xyz-xy-yz-zx+1$.Chứng minh $A>0$ với mọi $x,y,z$ lớn hơn $1$
Đề bài: Cho $A=2xyz-xy-yz-zx+1$.Chứng minh $A>0$ với mọi $x,y,z$ lớn hơn $1$ Lời giải Đề bài: Cho $A=2xyz-xy-yz-zx+1$.Chứng minh $A>0$ với mọi $x,y,z$ lớn hơn $1$ Lời giải Ta có: … [Đọc thêm...] vềĐề bài: Cho $A=2xyz-xy-yz-zx+1$.Chứng minh $A>0$ với mọi $x,y,z$ lớn hơn $1$
Đề bài: Cho $f:[0,1] \to [-1,1]$ liên tục.Chứng minh rằng: $\int\limits^{1}_{0}\sqrt{a-[f(x)]^{2}dx}\leq \sqrt{1-[\int\limits^{1}_{0}f(x)dx]^{2}}$
Đề bài: Cho $f:[0,1] \to [-1,1]$ liên tục.Chứng minh rằng: $\int\limits^{1}_{0}\sqrt{a-[f(x)]^{2}dx}\leq \sqrt{1-[\int\limits^{1}_{0}f(x)dx]^{2}}$ Lời giải Đề bài: Cho $f:[0,1] \to [-1,1]$ liên tục.Chứng minh rằng: $\int\limits^{1}_{0}\sqrt{a-[f(x)]^{2}dx}\leq \sqrt{1-[\int\limits^{1}_{0}f(x)dx]^{2}}$ Lời giải … [Đọc thêm...] vềĐề bài: Cho $f:[0,1] \to [-1,1]$ liên tục.Chứng minh rằng: $\int\limits^{1}_{0}\sqrt{a-[f(x)]^{2}dx}\leq \sqrt{1-[\int\limits^{1}_{0}f(x)dx]^{2}}$
Đề bài: Cho $a+b=2$. Chứng minh rằng:a) $a^2+b^2\geq 2$ b) $a^4+b^4\geq 2$ c) $a^8+b^8\geq 2$.
Đề bài: Cho $a+b=2$. Chứng minh rằng:a) $a^2+b^2\geq 2$ b) $a^4+b^4\geq 2$ c) $a^8+b^8\geq 2$. Lời giải Đề bài: Cho $a+b=2$. Chứng minh rằng:a) $a^2+b^2\geq 2$ b) $a^4+b^4\geq 2$ c) $a^8+b^8\geq 2$. Lời giải $a.$*Cách 1: Ta có: … [Đọc thêm...] vềĐề bài: Cho $a+b=2$. Chứng minh rằng:a) $a^2+b^2\geq 2$ b) $a^4+b^4\geq 2$ c) $a^8+b^8\geq 2$.