• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

Đề bài: Cho $A=2xyz-xy-yz-zx+1$.Chứng minh $A>0$ với mọi $x,y,z$ lớn hơn $1$

Đăng ngày: 11/07/2021 Biên tập: admin Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

adsense
Đề bài: Cho $A=2xyz-xy-yz-zx+1$.Chứng minh $A>0$ với mọi $x,y,z$ lớn hơn $1$

Bat dang thuc

Lời giải

Đề bài:
Cho $A=2xyz-xy-yz-zx+1$.Chứng minh $A>0$ với mọi $x,y,z$ lớn hơn $1$
Lời giải

adsense

Ta có: $A=xyz-xy+xyz-zx-yz+1$
$=xy(z-1)+xz(y-1)-yz+1$
$=xy(z-1)+xz(y-1)-yz+1+z-1-(z-1)$
$=(z-1).(xy-1)+xz(y-1)-z(y-1)$
$=(z-1).(xy-1)+z(y-1).(x-1).$
Vì $x,y,z>1$ nên $xy-1,y-1,z-1,x-1$ đều dương.
Suy ra:       $A>0       \forall  x,y,z>1$.

=========
Chuyên mục: Các dạng bất đẳng thức khác

Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Bài liên quan:

  1. Đề bài: Chứng minh bất đẳng thức:a) $\sqrt{ \cos^4a+\cos^4b}+\sin^2a+\sin^2b \geq  \sqrt{ 2} $b) $\sqrt{a^2-\sqrt{ 2}ab+b^2  }+\sqrt{b^2-\sqrt{ 3}bc+c^2  } \geq  \sqrt{a^2-\sqrt{ 2-\sqrt{ 3} }ac+c^2  }$
  2. Đề bài: 1)    Chứng minh $x^2+2xy+3y^2+2x+6y+3\geq 0$ đúng với $\forall x,y$2)    Tìm $m$ để $9x^2+20y^2+4z^2-12xy+6xz+myz\geq 0$ đúng với $\forall x,y,z$3)    Giả sử $a > b > c$, chứng minh: $(x + a + b + c)^2 > 8(bx  +  ac)$ đúng với $\forall x$
  3. Đề bài: Chứng minh bất đẳng thức SCHUR: Nếu $a,b,c>0$ và $r>0$ thì:$a^{r}(a-b)(a-c)+b^{r}(b-c)(b-a)+c^{r}(c-a)(c-b) \geq  0$
  4. Đề bài: Chứng minh rằng:$n^{n+3}+(n+1)^{n+3}
  5. Đề bài: Chứng minh rằng:$-\frac{1}{2}\leq \frac{(a+b)(1-ab)}{(1+a^{2})(1+b^{2})}\leq \frac{1}{2}$
  6. Đề bài: Cho $1\geq n \in N,a_{i},b_{i} \in R,i=1,2,…,n$.Hãy chứng minh rằng:$(a_{1}b_{1}+a_{2}b_{2}+…+a_{n}b_{n})^{2}\leq (a_{1}^{2}+a_{2}^{2}+…+a_{n}^{2}).(b_{1}^{2}+…+b_{n}^{2})$
  7. Đề bài: Cho $x_1,x_2…x_n$ là $n$ số thực thuộc đoạn $[0,1]$. Chứng minh rằng ta luôn có bất đẳng thức:$x_1(1-x_2)+x_2(1-x_3)+…+x_n(1-x_1)\leq \frac{n}{2}           (1)$
  8. Đề bài: Cho $a+b\geq 2$.Chứng minh rằng:$a^{4}+b^{4}\geq a^{3}+b^{3}$
  9. Đề bài:  Cho $4$ số thực $a,b,c,d$ thỏa mãn điều kiện $(I) \begin{cases}2a+b=6 \\ 2c+d=2 \end{cases}$Hãy tìm giá trị nhỏ nhất của biểu thức    $U=\sqrt{(a-4)^2+(b-3)^2}+\sqrt{(a-c)^2+(b-d)^2}+\sqrt{(c+1)^2+(d+3)^2}$
  10. Đề bài: Cho ba số dương $a,b,c$ trong đó $a>c b>c$.Chứng minh rằng : $\sqrt{c(a-c)}+\sqrt{c(b-c)} \leq  \sqrt{ab}     (1)  $.Dấu bằng khi nào xảy ra?
  11. Đề bài: Chứng minh bất đẳng thức:a)$\frac{x^{2} }{a^{2}}+\frac{y^{2} }{b^{2}}=1 \Rightarrow  \frac{1}{x^{2}}+\frac{1}{y^{2} } \geq  (\frac{1}{a}+\frac{1}{b})^{2}                     b)\sqrt{c}(\sqrt{a-c}+ \sqrt{b-c}) \leq  \sqrt{ab}     $
  12. Đề bài: Chứng minh rằng:$x^{n}\geq y^{n} +(x-y)^{n},\forall x\geq y \geq 0,\forall n \in N^{*}$
  13. Đề bài: Cho $ab \neq 0$.Chứng minh rằng:$-2\sqrt{2}-2\leq \frac{a^{2}-(a-4b)^{2}}{a^{2}+4b^{2}}\leq 2\sqrt{2}-2$
  14. Đề bài: Cho $n \in N,a_{i} \geq 1,i-1,2,…,n.$Hãy chứng minh:$\frac{1}{1+a_{1}}+\frac{1}{1+a_{2}}+…+\frac{1}{1+a_{n}} \geq \frac{n}{1+\sqrt[n]{a_{1}.a_{2}…a_{n}}}$
  15. Đề bài: Cho $n \in N,n\geq 1,a_{1},a_{2},…,a_{n} \geq 0$ thỏa mãn :$a_{1}+a_{2}+…+a_{n} \leq \frac{1}{2}$Hãy chứng minh:$(1-a_{1}).(1-a_{2})…(1-a_{n}) \geq \frac{1}{2}$

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2023) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.