Đề bài: Chứng minh rằng : $b(a+1) \leq e^a + b. \ln b, \forall a,b \geq 1$ Lời giải Đề bài: Chứng minh rằng : $b(a+1) \leq e^a + b. \ln b, \forall a,b \geq 1$ Lời giải Xét hàm số $ y = \ln x , x \geq 1 $ thì hàm số ngược của nó là $x=e^y$Từ đồ thị , ta có : $S_1+S_2 \geq S{OBCA} … [Đọc thêm...] vềĐề bài: Chứng minh rằng : $b(a+1) \leq e^a + b. \ln b, \forall a,b \geq 1$
Bất đẳng thức - Bài tập tự luận
Đề bài: Cho $A=2xyz-xy-yz-zx+1$.Chứng minh $A>0$ với mọi $x,y,z$ lớn hơn $1$
Đề bài: Cho $A=2xyz-xy-yz-zx+1$.Chứng minh $A>0$ với mọi $x,y,z$ lớn hơn $1$ Lời giải Đề bài: Cho $A=2xyz-xy-yz-zx+1$.Chứng minh $A>0$ với mọi $x,y,z$ lớn hơn $1$ Lời giải Ta có: … [Đọc thêm...] vềĐề bài: Cho $A=2xyz-xy-yz-zx+1$.Chứng minh $A>0$ với mọi $x,y,z$ lớn hơn $1$
Đề bài: Cho $f:[0,1] \to [-1,1]$ liên tục.Chứng minh rằng: $\int\limits^{1}_{0}\sqrt{a-[f(x)]^{2}dx}\leq \sqrt{1-[\int\limits^{1}_{0}f(x)dx]^{2}}$
Đề bài: Cho $f:[0,1] \to [-1,1]$ liên tục.Chứng minh rằng: $\int\limits^{1}_{0}\sqrt{a-[f(x)]^{2}dx}\leq \sqrt{1-[\int\limits^{1}_{0}f(x)dx]^{2}}$ Lời giải Đề bài: Cho $f:[0,1] \to [-1,1]$ liên tục.Chứng minh rằng: $\int\limits^{1}_{0}\sqrt{a-[f(x)]^{2}dx}\leq \sqrt{1-[\int\limits^{1}_{0}f(x)dx]^{2}}$ Lời giải … [Đọc thêm...] vềĐề bài: Cho $f:[0,1] \to [-1,1]$ liên tục.Chứng minh rằng: $\int\limits^{1}_{0}\sqrt{a-[f(x)]^{2}dx}\leq \sqrt{1-[\int\limits^{1}_{0}f(x)dx]^{2}}$
Đề bài: Cho $a+b=2$. Chứng minh rằng:a) $a^2+b^2\geq 2$ b) $a^4+b^4\geq 2$ c) $a^8+b^8\geq 2$.
Đề bài: Cho $a+b=2$. Chứng minh rằng:a) $a^2+b^2\geq 2$ b) $a^4+b^4\geq 2$ c) $a^8+b^8\geq 2$. Lời giải Đề bài: Cho $a+b=2$. Chứng minh rằng:a) $a^2+b^2\geq 2$ b) $a^4+b^4\geq 2$ c) $a^8+b^8\geq 2$. Lời giải $a.$*Cách 1: Ta có: … [Đọc thêm...] vềĐề bài: Cho $a+b=2$. Chứng minh rằng:a) $a^2+b^2\geq 2$ b) $a^4+b^4\geq 2$ c) $a^8+b^8\geq 2$.
Đề bài: Chứng minh rằng:$\sqrt{2} \leq \sqrt{1+x}+\sqrt{1-x}\leq 2, \forall x \in [-1,1]$
Đề bài: Chứng minh rằng:$\sqrt{2} \leq \sqrt{1+x}+\sqrt{1-x}\leq 2, \forall x \in [-1,1]$ Lời giải Đề bài: Chứng minh rằng:$\sqrt{2} \leq \sqrt{1+x}+\sqrt{1-x}\leq 2, \forall x \in [-1,1]$ Lời giải Đặt: $x=\cos 2\alpha,\alpha \in [0,\frac{\pi}{2}]$Suy ra:$A= \sqrt{1+x}+\sqrt{1-x}= \sqrt{2\cos … [Đọc thêm...] vềĐề bài: Chứng minh rằng:$\sqrt{2} \leq \sqrt{1+x}+\sqrt{1-x}\leq 2, \forall x \in [-1,1]$
Đề bài: Cho các số dương $a,b,c$ chứng minh rằng: $(a+b-c)^n+(b+c-a)^n+(c+a-b)^n\geq a^n+b^n+c^n$.
Đề bài: Cho các số dương $a,b,c$ chứng minh rằng: $(a+b-c)^n+(b+c-a)^n+(c+a-b)^n\geq a^n+b^n+c^n$. Lời giải Đề bài: Cho các số dương $a,b,c$ chứng minh rằng: $(a+b-c)^n+(b+c-a)^n+(c+a-b)^n\geq a^n+b^n+c^n$. Lời giải Đặt : $\begin{cases}x=a+b-c \\ y=b+c-a … [Đọc thêm...] vềĐề bài: Cho các số dương $a,b,c$ chứng minh rằng: $(a+b-c)^n+(b+c-a)^n+(c+a-b)^n\geq a^n+b^n+c^n$.
Đề bài: Cho $a,b,c>0$.Chứng minh rằng : $\frac{a^{5}+b^{5}+c^{5}}{3}\geq \left ( \frac{a+b+c}{3} \right )^{5}$ $\left ( 1 \right )$
Đề bài: Cho $a,b,c>0$.Chứng minh rằng : $\frac{a^{5}+b^{5}+c^{5}}{3}\geq \left ( \frac{a+b+c}{3} \right )^{5}$ $\left ( 1 \right )$ Lời giải Đề bài: Cho $a,b,c>0$.Chứng minh rằng : $\frac{a^{5}+b^{5}+c^{5}}{3}\geq \left ( \frac{a+b+c}{3} \right )^{5}$ $\left ( 1 \right )$ Lời giải $\left ( 1 … [Đọc thêm...] vềĐề bài: Cho $a,b,c>0$.Chứng minh rằng : $\frac{a^{5}+b^{5}+c^{5}}{3}\geq \left ( \frac{a+b+c}{3} \right )^{5}$ $\left ( 1 \right )$
Đề bài: Cho tam giác $ABC$ thỏa mãn: $\cos A + \cos B+\cos C =\sin \frac{ A}{ 2} + \sin \frac{ B}{ 2} +\sin \frac{C }{ 2} (1)$.Chứng minh $\Delta ABC$ đều.
Đề bài: Cho tam giác $ABC$ thỏa mãn: $\cos A + \cos B+\cos C =\sin \frac{ A}{ 2} + \sin \frac{ B}{ 2} +\sin \frac{C }{ 2} (1)$.Chứng minh $\Delta ABC$ đều. Lời giải Đề bài: Cho tam giác $ABC$ thỏa mãn: $\cos A + \cos B+\cos C =\sin \frac{ A}{ 2} + \sin \frac{ B}{ 2} +\sin \frac{C }{ 2} (1)$.Chứng minh $\Delta ABC$ đều. Lời giải … [Đọc thêm...] vềĐề bài: Cho tam giác $ABC$ thỏa mãn: $\cos A + \cos B+\cos C =\sin \frac{ A}{ 2} + \sin \frac{ B}{ 2} +\sin \frac{C }{ 2} (1)$.Chứng minh $\Delta ABC$ đều.
Đề bài: Cho $a,b,c$ là 3 cạnh tam giác. Chứng minh:$\displaystyle \frac{a}{2b+2c-a}+\frac{b}{2c+2a-b}+\frac{c}{2a+2b-c}\geq 1$
Đề bài: Cho $a,b,c$ là 3 cạnh tam giác. Chứng minh:$\displaystyle \frac{a}{2b+2c-a}+\frac{b}{2c+2a-b}+\frac{c}{2a+2b-c}\geq 1$ Lời giải Đề bài: Cho $a,b,c$ là 3 cạnh tam giác. Chứng minh:$\displaystyle \frac{a}{2b+2c-a}+\frac{b}{2c+2a-b}+\frac{c}{2a+2b-c}\geq 1$ Lời giải Đặt $x=2b+2c-a ; … [Đọc thêm...] vềĐề bài: Cho $a,b,c$ là 3 cạnh tam giác. Chứng minh:$\displaystyle \frac{a}{2b+2c-a}+\frac{b}{2c+2a-b}+\frac{c}{2a+2b-c}\geq 1$
Đề bài: Chứng minh rằng nếu $a, b, c$ là độ dài ba cạnh của một tam giác có chu vi bằng $3$ thì \(3{a^2} + 3{b^2} + 3{c^2} + 4abc \ge 13\)
Đề bài: Chứng minh rằng nếu $a, b, c$ là độ dài ba cạnh của một tam giác có chu vi bằng $3$ thì \(3{a^2} + 3{b^2} + 3{c^2} + 4abc \ge 13\) Lời giải Đề bài: Chứng minh rằng nếu $a, b, c$ là độ dài ba cạnh của một tam giác có chu vi bằng $3$ thì \(3{a^2} + 3{b^2} + 3{c^2} + 4abc \ge 13\) Lời giải … [Đọc thêm...] vềĐề bài: Chứng minh rằng nếu $a, b, c$ là độ dài ba cạnh của một tam giác có chu vi bằng $3$ thì \(3{a^2} + 3{b^2} + 3{c^2} + 4abc \ge 13\)