• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Blog / Cho hàm số \(f(x)\) là hàm bậc 5 và đồ thị hàm số \(f'(x)\) như hình vẽ bên dưới. Có bao nhiêu số nguyên \(m \in \left( { – 10;10} \right)\) để hàm số \(y = f\left( {{x^2} + m} \right)\) có đúng \(5\) điểm cực trị?

Cho hàm số \(f(x)\) là hàm bậc 5 và đồ thị hàm số \(f'(x)\) như hình vẽ bên dưới. Có bao nhiêu số nguyên \(m \in \left( { – 10;10} \right)\) để hàm số \(y = f\left( {{x^2} + m} \right)\) có đúng \(5\) điểm cực trị?

Ngày 04/08/2021 Thuộc chủ đề:Blog, Trắc nghiệm Cực trị của hàm số Tag với:TN THPT 2021, Trắc nghiệm cực trị Vận dụng

Câu hỏi: Cho hàm số \(f(x)\) là hàm bậc 5 và đồ thị hàm số \(f'(x)\) như hình vẽ bên dưới. Có bao nhiêu số nguyên \(m \in \left( { – 10;10} \right)\) để hàm số \(y = f\left( {{x^2} + m} \right)\) có đúng \(5\) điểm cực trị?
Cho hàm số (f(x)) là hàm bậc 5 và đồ thị hàm số (f'(x)) như hình vẽ bên dưới. Có bao nhiêu số nguyên (m in left( { - 10;10} right)) để hàm số (y = fleft( {{x^2} + m} right)) có đúng (5) điểm cực trị?</p> 1

A. \(3\).

B. \(7\).

C. \(10\).

D. \(9\).

LỜI GIẢI CHI TIẾT

Ta có \(f'(x)\) giao với trục hoành tại các điểm có hoành độ \(x = 0;\,\,x = 2;\,\,x = 3\), trong đó điểm có hoành độ \(x = 2\) là điểm tiếp xúc với trục hoành do đó \(f’\left( x \right) = ax{\left( {x – 2} \right)^2}\left( {x – 3} \right),\) với \(a < 0,\,\,a \in \mathbb{R}\).

Khi đó \(y’ = 2xf’\left( {{x^2} + m} \right) = 2ax\left( {{x^2} + m} \right){\left( {{x^2} + m – 2} \right)^2}\left( {{x^2} + m – 3} \right).\)

TH1: Nếu \(m \ge 3 \Rightarrow {x^2} + m > 0;\,\,{x^2} + m – 3 \ge 0,\,\,\forall x\) khi đó \(y’\) đổi dấu qua \(x = 0\), hàm số có đúng một điểm cực trị.

TH2: Nếu \(m < 0\) khi đó \(y’\) đổi dấu qua \(5\) điểm là \(x = 0;\,\,x = \pm \sqrt { – m} ;\,\,x = \pm \sqrt {3 – m} \) hàm số có đúng \(5\) điểm cực trị.

TH3: Nếu \(0 \le m < 3 \Rightarrow {x^2} + m \ge 0,\forall x\) khi đó \(y’\) đổi dấu qua \(3\) điểm là \(x = 0;\,\,x = \pm \sqrt {3 – m} \), hàm số có đúng ba điểm cực trị.

Vì \(m < 0\) và \(m \in \left( { – 10;10} \right)\) nên \(m \in \left\{ { – 9; – 8; – 7; – 6; – 5; – 4; – 3; – 2; – 1} \right\}\).

Vậy có tất cả \(9\) số nguyên \(m\) thỏa mãn yêu cầu bài toán.

=======

Bài liên quan:

  1. Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(y = – {x^4} + 6{x^2} + mx\) có ba điểm cực trị?
  2. Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị như hình vẽ dưới đây.

    Số điểm cực trị của hàm số \(g\left( x \right) = f\left( {{x^3} + 3{x^2} – 4} \right)\) là

  3. Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'(x) = {(x + 1)^2}\left( {{x^2} – 4x} \right)\).Có bao nhiêu giá trị nguyên dương của tham số \(m\) để hàm số \(g(x) = f\left( {2{x^2} – 12x + m} \right)\) có đúng 5 điểm cực trị?

  4. Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị như hình vẽ bên

    Số điểm cực trị của hàm số \(g\left( x \right) = f\left( {{x^3} – 3{x^2} + 4} \right)\) là

  5. Cho hàm số \(y = f\left( x \right)\) có đồ thị hàm số như hình bên. Hàm số \(g\left( x \right) = f\left( { – {x^2} + 3x} \right)\) có bao nhiêu điểm cực đại?

    88
  6. Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và có bảng xét dấu của đạo hàm \(f’\left( x \right)\) như sau:

    Hỏi hàm số \(g\left( x \right) = f\left( {{x^2} – 2x} \right)\) có bao nhiêu điểm cực tiểu?

  7. Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\) và có đồ thị \(f’\left( x \right)\) như hình vẽ. Đặt \(g\left( x \right) = f\left( x \right) – x\). Hàm số \(g\left( x \right)\) đạt cực đại tại điểm nào sau đây?

  8. Cho hàm số bậc bốn \(y = f\left( x \right)\)có đồ thị như hình dưới đây

    Số điểm cực trị của hàm số \(g\left( x \right) = f\left( {{x^3} – 3{x^2}} \right)\) là

  9. Cho hàm số có đồ thị như hình vẽ bên dưới. Số điểm cực trị của hàm số là

    C:\Users\Administrator\Desktop\cau-50-de-thoai-ngoc-hau.png
  10. Cho hàm số\(\,y = f\left( x \right)\,\)có bảng biến thiên như hình vẽ bên. Hàm số\(\,y = f\left( {2x} \right)\,\)đạt cực đại tại

  11. Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:

    Hàm số \(g\left( x \right) = 2{f^3}\left( x \right) – 6{f^2}\left( x \right) – 1\) có bao nhiêu điểm cực tiểu?

  12. Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ bên. Có bao nhiêu giá trị nguyên của tham số \(m\) để

    hàm số \(g\left( x \right) = \left| {f\left( {x + 2018} \right) + {m^2}} \right|\) có \(5\) điểm cực trị?

  13. Cho hàm số \(f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\). Hàm số \(y = f’\left( x \right)\) có đồ thị như hình vẽ.

    Số điểm cực trị của hàm số \(g\left( x \right) = f(x – 2018) – 2019x + 2020\) là

  14. Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và \(f\left( 0 \right) < 0,\) đồng thời đồ thị hàm số \(y = f’\left( x \right)\) như hình vẽ bên dưới

    132

    Số điểm cực trị của hàm số \(g\left( x \right) = {f^2}\left( x \right)\) là

  15. Cho hàm số bậc ba\(y = f\left( x \right)\) có đồ thị như hình dưới đây. Số điểm cực trị của hàm số \(g\left( x \right) = f\left( {{x^4} – 8{x^2} + 1} \right)\)là

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Sách Giáo Khoa lớp 11
  • Sách Giáo Khoa lớp 7
  • Sách Giáo Khoa lớp 2
  • Sách Giáo Khoa lớp 6
  • Sách Giáo Khoa lớp 12
  • Sách Giáo Khoa lớp 9
  • Sách Giáo Khoa lớp 5

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.