• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {(y + 1)^2} + {\left( {z – 2} \right)^2} = 1\). Xét điểm \(M\) di động trên đường thẳng \(\left( d \right):\frac{{x – 1}}{2} = \frac{{y – 1}}{1} = \frac{{z + 2}}{{ – 2}}\). Qua \(M\) vẽ đường thẳng cắt mặt cầu \(\left( S \right)\) tại 2 điểm \(A,\,B\). Dựng mặt cầu tâm \(M\) bán kính \(MA.MB\). Khi đường tròn giao tuyến của 2 mặt cầu có diện tích nhỏ nhất thì \(M\)có tọa độ \(M\left( {a,b,c} \right)\). Giá trị của \(P =  – a + b + c\) bằng

Đăng ngày: 07/05/2021 Biên tập: admin Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Cau 50 de toan 2021, Phuong trinh mat phang VDC, TN THPT 2021

adsense
DẠNG TOÁN 50: PHƯƠNG TRÌNH MẶT PHẲNG (Tìm hệ số của phương trình mặt phẳng thỏa mãn các điều kiện cho trước lồng ghép với khối tròn xoay) ===============

Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {(y + 1)^2} + {\left( {z – 2} \right)^2} = 1\). Xét điểm \(M\) di động trên đường thẳng \(\left( d \right):\frac{{x – 1}}{2} = \frac{{y – 1}}{1} = \frac{{z + 2}}{{ – 2}}\). Qua \(M\) vẽ đường thẳng cắt mặt cầu \(\left( S \right)\) tại 2 điểm \(A,\,B\). Dựng mặt cầu tâm \(M\) bán kính \(MA.MB\). Khi đường tròn giao tuyến của 2 mặt cầu có diện tích nhỏ nhất thì \(M\)có tọa độ \(M\left( {a,b,c} \right)\). Giá trị của \(P =  – a + b + c\) bằng

A. \(P = \frac{4}{3}\). 

B. \(P = \frac{3}{4}\). 

C. \(P =  – \frac{4}{3}\). 

D. \(P =  – \frac{3}{4}\).

LỜI GIẢI CHI TIẾT

<p> Trong không gian (Oxyz), cho mặt cầu (left( S right):{left( {x - 1} right)^2} + {(y + 1)^2} + {left( {z - 2} right)^2} = 1). Xét điểm (M) di động trên đường thẳng (left( d right):frac{{x - 1}}{2} = frac{{y - 1}}{1} = frac{{z + 2}}{{ - 2}}). Qua (M) vẽ đường thẳng cắt mặt cầu (left( S right)) tại 2 điểm (A,,B). Dựng mặt cầu tâm (M) bán kính (MA.MB). Khi đường tròn giao tuyến của 2 mặt cầu có diện tích nhỏ nhất thì (M)có tọa độ (Mleft( {a,b,c} right)). Giá trị của (P =  - a + b + c) bằng</p> 1

Gọi \(M\) là một điểm tùy ý trên \(\left( d \right)\). Do \(M\) nằm trên đường thẳng \(\left( d \right)\) nên ta có tọa độ của \(M\left( {2t + 1;t + 1; – 2t – 2} \right)\). Giả sử \(M\)nằm trên mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {(y + 1)^2} + {\left( {z – 2} \right)^2} = 1\) thì:

\({\left( {2t + 1 – 1} \right)^2} + {(t + 1 + 1)^2} + {\left( { – 2t – 2 – 2} \right)^2} = 1 \Leftrightarrow 9{t^2} + 20t + 19 = 0\)

adsense

Phương trình này vô nghiệm, do đó điểm \(M\)di động trên đường thẳng \(d\) luôn nằm ngoài mặt cầu.

Gọi \(O’,I\) lần lượt là tâm mặt cầu \(\left( S \right)\)và trung điểm đoạn \(AB\), \(T\)là tiếp điểm của một tiếp tuyến từ \(M\) đến mặt cầu \(\left( S \right)\). Khi đó

\(\begin{array}{l}MA.MB = \overrightarrow {MA} .\overrightarrow {MB}  = \left( {\overrightarrow {MI}  + \overrightarrow {IA} } \right)\left( {\overrightarrow {MI}  + \overrightarrow {IB} } \right) = \left( {\overrightarrow {MI}  + \overrightarrow {IA} } \right)\left( {\overrightarrow {MI}  – \overrightarrow {IA} } \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = M{I^2} – I{A^2} = MO{‘^2} – O'{I^2} – I{A^2} = MO{‘^2} – 1 = M{T^2}.\end{array}\)

Gọi \(H\) là hình chiếu của \(T\) lên \(MO’\). Dễ thấy ngay H là tâm đường tròn giao tuyến của 2 mặt cầu đang xét. Từ hệ thức lượng trong tam giác vuông, ta có

\(\frac{1}{{T{H^2}}} = \frac{1}{{M{T^2}}} + \frac{1}{{O'{T^2}}} = \frac{1}{{M{T^2}}} + 1\).

Vậy đường tròn giao tuyến có diện tích nhỏ nhất khi và chỉ khi \(TH\) có giá trị nhỏ nhất. \(TH\) nhỏ nhất khi và chỉ khi \(MT\) nhỏ nhất.

Ta có \(M{T^2} = 9{t^2} + 20t + 19 \ge \frac{{71}}{9}\). Dấu đẳng thức xảy ra khi \(t =  – \frac{{10}}{9}\). Vậy tọa độ điểm \(M\) là

\(M\left( { – \frac{{11}}{9}; – \frac{1}{9};\frac{2}{9}} \right) \Rightarrow P = \frac{{12}}{9} = \frac{4}{3}\).

================= I. KIẾN THỨC CẦN NHỚ: 1. Phương trình mặt phẳng • Mặt phẳng (left( P right)) đi qua điểm (left( ;;} right)), có vectơ pháp tuyến (overrightarrow n = left( right),; + + ne 0), có phương trình là : (Aleft( } right) + Bleft( } right) + Cleft( } right) = 0) 2.Khai triển củaphương trình tổng quát Dạng khai triển của phương trình tổng quát là: (Ax + By + Cz + D = 0) (trong đó A,B,C không đồng thời bằng 0)

Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Cau 50 de toan 2021, Phuong trinh mat phang VDC, TN THPT 2021

Bài liên quan:

  1. Trong không gian \(Oxyz\), cho điểm \(A\left( {0;1;2} \right)\) và đường thẳng \(d:\frac{{x – 2}}{2} = \frac{{y – 1}}{2} = \frac{{z – 1}}{{ – 3}}\). Gọi \(\left( P \right)\) là mặt phẳng đi qua \(A\) và chứa \(d\). Khoảng cách từ điểm \(M\left( {5; – 1;3} \right)\) đến \(\left( P \right)\) bằng
  2. (De toan 2022) Trong không gian \(Oxyz\), cho điểm \(A\left( {2;1;1} \right)\). Gọi \(\left( P \right)\) là mặt phẳng chứa trục \(Oy\) sao cho khoảng cách từ \(A\) đến \(\left( P \right)\) lớn nhất. Phương trình của \(\left( P \right)\) là

  3. Đề toán 2022 [Mức độ 3] Trong không gian \(Oxyz\), cho điểm \(A(1;2;2)\). Gọi \((P)\) là mặt phẳng chứa \(Ox\) sao cho khoảng cách từ \(A\) đến mặt phẳng \((P)\) lớn nhất. Phương trình mặt phẳng \((P)\) là:

  4. Đề toán 2022 Trong không gian \(Oxyz\), cho điểm \(A\left( {1;2; – 2} \right)\). Gọi \(\left( P \right)\) là mặt phẳng chứa trục \(Ox\) sao cho khoảng cách từ \(A\) đến \(\left( P \right)\) lớn nhất. Phương trình của \(\left( P \right)\) là:

  5. Cắt hình trụ \((T)\) bởi mặt phẳng song song với trục và cách trục một khoảng bằng \(2a\), ta được thiết diện là một hình vuông có diện tích bẳng \(16{a^2}\). Diện tích xung quanh của \((T)\) bằng

  6. Xét các số phức \(z\) và \(w\) thay đổi thỏa mãn \(\left| z \right| = \left| w \right| = 3\) và \(\left| {z – w} \right| = 3\sqrt 2 \). Giá trị nhỏ nhất của \(P = \left| {z + 1 + i} \right| + \left| {w – 2 + 5i} \right|\) bằng
  7. Cho khối lăng trụ tam giác đều \(ABC.A’B’C’\) có cạnh bên bằng \(2a\), góc giữa hai mặt phẳng \(\left( {A’BC} \right)\) và \(\left( {ABC} \right)\) bằng
  8. Trong không gian \(Oxyz\) cho điểm \(A\left( {1;1;1} \right)\) và đường thẳng \(d:\frac{{x – 1}}{1} = \frac{y}{2} = \frac{{z + 1}}{1}\). Đường thẳng đi qua \(A\), cắt trục \(Oy\) và vuông góc với \(d\) có phương trình là

  9. Cho hàm số \(f\left( x \right) = a{x^4} + b{x^3} + c{x^2}\left( {a,b,c \in \mathbb{R}} \right).\) Hàm số \(y = f’\left( x \right)\) có đồ thị như trong hình bên. Số nghiệm thực phân biệt của phương trình \(2f\left( x \right) + 3 = 0\)

  10. Trên tập hợp các số phức, xét phương trình \({z^2} + 2az + {b^2} + 2 = 0\) (\(a,\,b\)là các tham số thực). Có bao nhiêu cặp số thực \((a\,;\,b)\) sao cho phương trình đó có hai nghiệm \({z_1},\,{z_2}\) thỏa mãn \({z_1} + 2i{z_2} = 3 + 3i\)?

  11. Có bao nhiêu số nguyên \(x\) thỏa mãn \(\left[ {{{\log }_2}\left( {{x^2} + 1} \right) – {{\log }_2}\left( {x + 21} \right)} \right]\left( {16 – {2^{x – 1}}} \right) \ge 0\)?

  12. Cho hàm số \(f\left( x \right) = {x^4} – 10{x^3} + 24{x^2} + \left( {4 – m} \right)x\), với \(m\) là tham số thực. Có bao nhiêu giá trị nguyên của \(m\) để hàm số \(g\left( x \right) = f\left( {\left| x \right|} \right)\) có đúng \(7\) điểm cực trị.

  13. Cho hai hàm số \(f(x) = a{x^4} + b{x^3} + c{x^2} + x\) và \(g(x) = m{x^3} + n{x^2} – 2x\); với \(a,b,c,m,n \in \mathbb{R}\). Biết hàm số \(y = f(x) – g(x)\) có ba điểm cực trị là \( – 1,2\) và 3. Diện tích hình phẳng giới hạn bởi hai đương \(y = f'(x)\) và \(y = g'(x)\) bằng

  14. Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { – 1;6} \right]\) và có đồ thị là đường gấp khúc \(ABC\) trong hình bên. Biết \(F\)là nguyên hàm của \(f\) thỏa mãn \(F\left( { – 1} \right) =  – 1\). Giá trị của \(F\left( 5 \right) + F\left( 6 \right)\) bằng 

  15. Có bao nhiêu số nguyên dương y sao cho tồn tại số thực \(x \in \left( {1;\,6} \right)\) thỏa mãn \(4\left( {x – 1} \right){e^x} = y\left( {{e^x} + xy – 2{x^2} – 3} \right)\)?

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2023) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.