• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

Trong các số phức \(z\) thỏa mãn \(\left( {z + i\overline z – 4} \right)\) là số thuần ảo. Số phức \(z\) có môđun nhỏ nhất là

Đăng ngày: 06/06/2023 Biên tập: admin Thuộc chủ đề:Trắc nghiệm Số phức Tag với:Cuc tri so phuc, so phuc vdc, VDC Toan 2023

adsense
Trong các số phức \(z\) thỏa mãn \(\left( {z + i\overline z – 4} \right)\) là số thuần ảo. Số phức \(z\) có môđun nhỏ nhất là

A. \(z = 2 + 2i\).

B. \(z = – 1 + i\).

C. \(z = – 2 + 2i\).

D. \(z = 3 + 2i\).

Lời giải:

adsense

Gọi \(z = a + bi\) (\(a\), \(b \in \mathbb{R}\)). Khi đó \(z + i\overline z – 4 = a + bi + i\left( {a – bi} \right) – 4 = a + b – 4 + \left( {a + b} \right)i\).

Vì \(\left( {z + i\overline z – 4} \right)\) là số thuần ảo nên \(a + b – 4 = 0 \Leftrightarrow b = 4 – a\).

Khi đó: \(\left| z \right| = \sqrt {{a^2} + {b^2}} = \sqrt {{a^2} + {{\left( {4 – a} \right)}^2}} = \sqrt {2{a^2} – 8a + 16} = \sqrt {2{{\left( {a – 2} \right)}^2} + 8} \ge 2\sqrt 2 \).

Đẳng thức xảy ra \( \Leftrightarrow \) \(\left\{ \begin{array}{l}a = 2\\b = 2\end{array} \right.\).

Vậy \(z = 2 + 2i\).

=========== Đây là các câu ÔN THI TN THPT MÔN TOÁN 2023 – CHUYÊN ĐỀ Trắc nghiệm Số phức.

Thuộc chủ đề:Trắc nghiệm Số phức Tag với:Cuc tri so phuc, so phuc vdc, VDC Toan 2023

Bài liên quan:

  1. Tập hợp \(S\) các giá trị nguyên thuộc khoảng \(\left( { – 2023;\;2023} \right)\) của tham số thực \(m\) sao cho phương trình \({\log _2}\left( {x – \sqrt {{x^2} – 4} } \right).{\log _5}\left( {x – \sqrt {{x^2} – 4} } \right) = {\log _m}\left( {x + \sqrt {{x^2} – 4} } \right)\) có nghiệm \(x\) lớn hơn \(3\). Số phần tử của tập hợp \(S\) là

  2. Có bao nhiêu số nguyên dương \(a\) sao cho ứng với mỗi \(a\) có đúng hai số nguyên \(b\) thỏa mãn \(\left( {\log _5^{}b – 1} \right)\left( {a{{\log }_2}b – 6} \right) < 0\)?

  3. Số nghiệm nguyên của phương trình \(\log _{\frac{1}{2}}^2\left( {\frac{8}{{{x^2}}}} \right) – {\log _2}4x = – 2\) là:

  4. Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ {0;30} \right]\) để phương trình \({6^x} + 2mx = m{2^x} + 2x{.3^x}\) có đúng 3 nghiệm nguyên dương.

  5. Có bao nhiêu giá trị nguyên của tham số thực \(m\) để phương trình \(4{\left( {{{\log }_{25}}x} \right)^2} – {\log _{\frac{1}{5}}}x + 1 – 3m = 0\) có hai nghiệm phân biệt thuộc khoảng \(\left( {0;1} \right)\).

  6. Có bao nhiêu cặp số nguyên \(\left( {x,y} \right)\) thỏa mãn \(0 \le x \le 2023\) và \({\log _3}\left( {9x + 18} \right) + x = 3y + {27^y}.\)

  7. Cho \(0 \le x \le 2022\) và \({\log _2}\left( {2x + 2} \right) + x – 3y = {8^y}\). Có bao nhiêu cặp \(\left( {x;y} \right)\) nguyên thỏa mãn các điều kiện trên?

  8. Tập nghiệm S của bất phương trình \({\log _{\frac{2}{3}}}\left( {2x – 4} \right) + {\log _{\frac{2}{3}}}\left( {x + 3} \right) < {\log _{\frac{3}{2}}}\frac{1}{{28}}\) là

  9. Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ {1\,;\,2023} \right]\) để phương trình \(\left( {{4^{x + 1}} – 65 \cdot {2^x} + 16} \right) \cdot \sqrt {{{\log }_3}{x^2} – m} = 0\) có \(2\) nghiệm nguyên.

  10. Tìm các giá trị thực của tham số \(m\) để phương trình \(\log _2^2x – 5{\log _2}x + 2m – 6 = 0\) có hai nghiệm thực \({x_1};\,{x_2}\) thỏa mãn \(\left( {{x_1} + 2} \right)\left( {{x_2} + 2} \right) = 60\).

  11. Tìm \(m\) để bất phương trình \({3^x} + {4^x} + {5^x} + {6^x} \ge 4 + mx\) có tập nghiệm là \(\mathbb{R}\).

  12. Có bao nhiêu giá trị nguyên của tham số \(m\) thuộc khoảng \(\left( { – 2023\,;2023} \right)\) để phương trình \({3.6^x} – \left( {7m – 48} \right).\sqrt {{6^x}} + 2{m^2} – 16m = 0\) có hai nghiệm phân biệt \({x_1},{x_2}\) thỏa mãn \({x_1} + {x_2} \ge 2\,\,?\)

  13. Cho số phức \(z\) thỏa mãn \(\left| {\overline z – 3 + 3i} \right| = 2\), số phức \(w\) thỏa mãn \(\left| {w + 2 – i} \right| = 1\). Tìm giá trị nhỏ nhất của \(\left| {w – z} \right|\).

  14. Cho số phức \(z\) thỏa mãn \(\left| {{z^2} + 6iz} \right| = 16\). Tìm giá trị lớn nhất của biểu thức\(P = \left| {\left( {3 + 4i} \right)z – 12 + 9i} \right|\)

  15. Xét các số phức \(z\), \(w\) thỏa mãn \(\left| {z – 2w} \right| = 4\) và \(\left| {3z + w} \right| = 5\).

    Khi \(\left| {5z – 3w + i} \right|\) đạt giá trị nhỏ nhất, hãy tính giá trị \(\left| {z – w + 1} \right|\).

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2023) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.