• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Trắc nghiệm Ứng dụng Tích phân

Cho hàm số \(y = f\left( x \right) = {x^3} + a{x^2} + bx + c\) có đồ thị \(\left( C \right)\), đường thẳng \(y = mx + n\) là tiếp tuyến của \(\left( C \right)\) tại điểm có hoành độ \(x = – 1\) và cắt \(\left( C \right)\) tại điểm có hoành độ bằng \(2\). Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = \left( {{x^2} – 1} \right){2^{f\left( x \right) – mx – n}}\) và trục hoành bằng

Ngày 16/07/2021 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:TN THPT 2021, Ung dung tich phan

Câu hỏi: Cho hàm số \(y = f\left( x \right) = {x^3} + a{x^2} + bx + c\) có đồ thị \(\left( C \right)\), đường thẳng \(y = mx + n\) là tiếp tuyến của \(\left( C \right)\) tại điểm có hoành độ \(x = - 1\) và cắt \(\left( C \right)\) tại điểm có hoành độ bằng \(2\). Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = \left( {{x^2} - 1} \right){2^{f\left( x \right) - mx - n}}\) … [Đọc thêm...] vềCho hàm số \(y = f\left( x \right) = {x^3} + a{x^2} + bx + c\) có đồ thị \(\left( C \right)\), đường thẳng \(y = mx + n\) là tiếp tuyến của \(\left( C \right)\) tại điểm có hoành độ \(x = – 1\) và cắt \(\left( C \right)\) tại điểm có hoành độ bằng \(2\). Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = \left( {{x^2} – 1} \right){2^{f\left( x \right) – mx – n}}\) và trục hoành bằng

Cho hai hàm số \(f\left( x \right) = {x^4} + a{x^2} + bx + 1\) và \(g\left( x \right) = c{x^2} + dx + 3\) \(\left( {a,\;b,\;c,\;d \in \mathbb{R}} \right)\). Biết rằng đồ thị của hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) cắt nhau tại hai điểm có hoành độ lần lượt là \( – 2\); 1. Hình phẳng giới hạn bởi hai đồ thị đã cho có diện tích bằng

Ngày 16/07/2021 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:TN THPT 2021, Ung dung tich phan

Câu hỏi: Cho hai hàm số \(f\left( x \right) = {x^4} + a{x^2} + bx + 1\) và \(g\left( x \right) = c{x^2} + dx + 3\) \(\left( {a,\;b,\;c,\;d \in \mathbb{R}} \right)\). Biết rằng đồ thị của hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) cắt nhau tại hai điểm có hoành độ lần lượt là \( - 2\); 1. Hình phẳng giới hạn bởi hai đồ thị đã cho có diện tích bằng A. … [Đọc thêm...] vềCho hai hàm số \(f\left( x \right) = {x^4} + a{x^2} + bx + 1\) và \(g\left( x \right) = c{x^2} + dx + 3\) \(\left( {a,\;b,\;c,\;d \in \mathbb{R}} \right)\). Biết rằng đồ thị của hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) cắt nhau tại hai điểm có hoành độ lần lượt là \( – 2\); 1. Hình phẳng giới hạn bởi hai đồ thị đã cho có diện tích bằng

Cho hàm số \(f\left( x \right) = 3{x^3} + b{x^2} + cx + d\) với \(b,\,c,\,d \in \mathbb{R}\). Biết hàm số \(g\left( x \right) = f\left( x \right) + f’\left( x \right) + f”\left( x \right)\) có hai giá trị cực trị là \( – 12;\,\,6\). Diện tích hình phẳng giới hạn bởi các đường \(y = \frac{{f\left( x \right)}}{{g\left( x \right) + 18}}\) và \(y = 1\) bằng

Ngày 16/07/2021 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:TN THPT 2021, Ung dung tich phan

Câu hỏi: Cho hàm số \(f\left( x \right) = 3{x^3} + b{x^2} + cx + d\) với \(b,\,c,\,d \in \mathbb{R}\). Biết hàm số \(g\left( x \right) = f\left( x \right) + f'\left( x \right) + f''\left( x \right)\) có hai giá trị cực trị là \( - 12;\,\,6\). Diện tích hình phẳng giới hạn bởi các đường \(y = \frac{{f\left( x \right)}}{{g\left( x \right) + 18}}\) và \(y = 1\) bằng A. \(2\ln … [Đọc thêm...] vềCho hàm số \(f\left( x \right) = 3{x^3} + b{x^2} + cx + d\) với \(b,\,c,\,d \in \mathbb{R}\). Biết hàm số \(g\left( x \right) = f\left( x \right) + f’\left( x \right) + f”\left( x \right)\) có hai giá trị cực trị là \( – 12;\,\,6\). Diện tích hình phẳng giới hạn bởi các đường \(y = \frac{{f\left( x \right)}}{{g\left( x \right) + 18}}\) và \(y = 1\) bằng

Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị như hình vẽ bên. Biết hàm số \(f\left( x \right)\) đạt cực trị tại hai điểm \({x_1};\,\,{x_2}\)thỏa mãn \({x_2} = {x_1} + 2\). Gọi \({S_1}\) và \({S_2}\)là diện tích của hai hình phẳng được gạch sọc trong hình bên. Tỉ số \(\frac{{{S_2}}}{{{S_1}}}\) bằng

Ngày 24/05/2021 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:TN THPT 2021, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, Tuong tu cau 48 de toan minh hoa

DẠNG TOÁN 48 : ỨNG DỤNG TÍCH PHÂN (TÍNH DIỆN TÍCH HÌNH PHẲNG, TỈ SỐ DIỆN TÍCH)   Theo đề tham khảo Toán 2021 ĐỀ BÀI: Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị như hình vẽ bên. Biết hàm số \(f\left( x \right)\) đạt cực trị tại hai điểm \({x_1};\,\,{x_2}\)thỏa mãn \({x_2} = {x_1} + 2\). Gọi \({S_1}\) và \({S_2}\)là diện tích của hai hình phẳng … [Đọc thêm...] vềCho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị như hình vẽ bên. Biết hàm số \(f\left( x \right)\) đạt cực trị tại hai điểm \({x_1};\,\,{x_2}\)thỏa mãn \({x_2} = {x_1} + 2\). Gọi \({S_1}\) và \({S_2}\)là diện tích của hai hình phẳng được gạch sọc trong hình bên. Tỉ số \(\frac{{{S_2}}}{{{S_1}}}\) bằng

Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị là đường cong trong hình dưới, đồ thị hàm số \(y = f\left( x \right)\) nhận đường thẳng \(x = {x_2}\) làm trục đối xứng. Biết hàm \(y = f\left( x \right)\) đạt cực trị tại các điểm \({x_1} < {x_2} < {x_3}\), ở đó \({x_1};{x_2};{x_3}\)thứ tự lập thành cấp số cộng có công sai \(d = 3\), biết \(f\left( {{x_1}} \right) = f\left( {{x_3}} \right) = \frac{1}{4}f\left( {{x_2}} \right)\). Gọi \({S_1},{S_2}\)là diện tích các hình phẳng được gạch chéo trong hình vẽ. Tính tỉ số \(\frac{{{S_1}}}{{{S_2}}}\)

Ngày 24/05/2021 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:TN THPT 2021, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, Tuong tu cau 48 de toan minh hoa

DẠNG TOÁN 48 : ỨNG DỤNG TÍCH PHÂN (TÍNH DIỆN TÍCH HÌNH PHẲNG, TỈ SỐ DIỆN TÍCH)   Theo đề tham khảo Toán 2021 ĐỀ BÀI: Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị là đường cong trong hình dưới, đồ thị hàm số \(y = f\left( x \right)\) nhận đường thẳng \(x = {x_2}\) làm trục đối xứng. Biết hàm \(y = f\left( x \right)\) đạt cực trị tại các điểm … [Đọc thêm...] vềCho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị là đường cong trong hình dưới, đồ thị hàm số \(y = f\left( x \right)\) nhận đường thẳng \(x = {x_2}\) làm trục đối xứng. Biết hàm \(y = f\left( x \right)\) đạt cực trị tại các điểm \({x_1} < {x_2} < {x_3}\), ở đó \({x_1};{x_2};{x_3}\)thứ tự lập thành cấp số cộng có công sai \(d = 3\), biết \(f\left( {{x_1}} \right) = f\left( {{x_3}} \right) = \frac{1}{4}f\left( {{x_2}} \right)\). Gọi \({S_1},{S_2}\)là diện tích các hình phẳng được gạch chéo trong hình vẽ. Tính tỉ số \(\frac{{{S_1}}}{{{S_2}}}\)

Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị là đường cong trong hình vẽ bên. Biết hàm số \(f\left( x \right)\) đạt cực trị tại các điểm \({x_1};\,0;\,{x_2}\) thỏa mãn \({x_2} = {x_1} + 2\) và \(f\left( {{x_1}} \right) = f\left( {{x_2}} \right) =  – 2\). Gọi \({S_1}\) và \({S_2}\) là diện tích của hai hình phẳng được gạch trong hình bên. Tỉ số \(\frac{{{S_1}}}{{{S_2}}}\) bằng

Ngày 24/05/2021 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:TN THPT 2021, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, Tuong tu cau 48 de toan minh hoa

DẠNG TOÁN 48 : ỨNG DỤNG TÍCH PHÂN (TÍNH DIỆN TÍCH HÌNH PHẲNG, TỈ SỐ DIỆN TÍCH)   Theo đề tham khảo Toán 2021 ĐỀ BÀI: Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị là đường cong trong hình vẽ bên. Biết hàm số \(f\left( x \right)\) đạt cực trị tại các điểm \({x_1};\,0;\,{x_2}\) thỏa mãn \({x_2} = {x_1} + 2\) và \(f\left( {{x_1}} \right) = f\left( … [Đọc thêm...] vềCho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị là đường cong trong hình vẽ bên. Biết hàm số \(f\left( x \right)\) đạt cực trị tại các điểm \({x_1};\,0;\,{x_2}\) thỏa mãn \({x_2} = {x_1} + 2\) và \(f\left( {{x_1}} \right) = f\left( {{x_2}} \right) =  – 2\). Gọi \({S_1}\) và \({S_2}\) là diện tích của hai hình phẳng được gạch trong hình bên. Tỉ số \(\frac{{{S_1}}}{{{S_2}}}\) bằng

Cho hàm số bậc ba \(y = f\left( x \right) = {x^3} + b{x^2} + cx + d\)có đồ thị như hình vẽ. \(\left| {f\left( {{x_1}} \right)} \right| = 2,5\left| {{x_1}} \right|\). Xác định tỉ lệ \(\frac{{{S_1}}}{{{S_2}}}\).

Ngày 24/05/2021 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:TN THPT 2021, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, Tuong tu cau 48 de toan minh hoa

DẠNG TOÁN 48 : ỨNG DỤNG TÍCH PHÂN (TÍNH DIỆN TÍCH HÌNH PHẲNG, TỈ SỐ DIỆN TÍCH)   Theo đề tham khảo Toán 2021 ĐỀ BÀI: Cho hàm số bậc ba \(y = f\left( x \right) = {x^3} + b{x^2} + cx + d\)có đồ thị như hình vẽ. \(\left| {f\left( {{x_1}} \right)} \right| = 2,5\left| {{x_1}} \right|\). Xác định tỉ lệ \(\frac{{{S_1}}}{{{S_2}}}\). A. … [Đọc thêm...] vềCho hàm số bậc ba \(y = f\left( x \right) = {x^3} + b{x^2} + cx + d\)có đồ thị như hình vẽ. \(\left| {f\left( {{x_1}} \right)} \right| = 2,5\left| {{x_1}} \right|\). Xác định tỉ lệ \(\frac{{{S_1}}}{{{S_2}}}\).

Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị là đường cong trong hình bên. Biết hàm số \(f\left( x \right)\) đạt cực trị tại hai điểm \({x_1},{x_2}\) thỏa mãn \({x_2} = {x_1} + 4\) và \(f\left( {{x_1}} \right) =  – f\left( {{x_2}} \right)\) Gọi \({S_1}\) và \({S_2}\) là diện tích của hai hình phẳng được gạch sọc trong hình. Tỉ số \(\frac{{{S_1}}}{{{S_2}}}\) bằng

Ngày 24/05/2021 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:TN THPT 2021, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, Tuong tu cau 48 de toan minh hoa

DẠNG TOÁN 48 : ỨNG DỤNG TÍCH PHÂN (TÍNH DIỆN TÍCH HÌNH PHẲNG, TỈ SỐ DIỆN TÍCH)   Theo đề tham khảo Toán 2021 ĐỀ BÀI: Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị là đường cong trong hình bên. Biết hàm số \(f\left( x \right)\) đạt cực trị tại hai điểm \({x_1},{x_2}\) thỏa mãn \({x_2} = {x_1} + 4\) và \(f\left( {{x_1}} \right) =  - f\left( … [Đọc thêm...] vềCho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị là đường cong trong hình bên. Biết hàm số \(f\left( x \right)\) đạt cực trị tại hai điểm \({x_1},{x_2}\) thỏa mãn \({x_2} = {x_1} + 4\) và \(f\left( {{x_1}} \right) =  – f\left( {{x_2}} \right)\) Gọi \({S_1}\) và \({S_2}\) là diện tích của hai hình phẳng được gạch sọc trong hình. Tỉ số \(\frac{{{S_1}}}{{{S_2}}}\) bằng

Hai đường cong \(\left( {{C_1}} \right):y = {a^x}.lna,\left( {{C_2}} \right):y = {b^x}.lnb,\left( {b > a > 1} \right)\) và hai đường thẳng \(x = 1,x = 2\) tạo thành hình thang cong \(MNPQ\)có diện tích bằng \(4\). Giá trị nhỏ nhất của biểu thức \(P = 2b\) bằng

Ngày 24/05/2021 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:TN THPT 2021, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, Tuong tu cau 48 de toan minh hoa

DẠNG TOÁN 48 : ỨNG DỤNG TÍCH PHÂN (TÍNH DIỆN TÍCH HÌNH PHẲNG, TỈ SỐ DIỆN TÍCH)   Theo đề tham khảo Toán 2021 ĐỀ BÀI: Hai đường cong \(\left( {{C_1}} \right):y = {a^x}.lna,\left( {{C_2}} \right):y = {b^x}.lnb,\left( {b > a > 1} \right)\) và hai đường thẳng \(x = 1,x = 2\) tạo thành hình thang cong \(MNPQ\)có diện tích bằng \(4\). Giá trị nhỏ nhất của … [Đọc thêm...] vềHai đường cong \(\left( {{C_1}} \right):y = {a^x}.lna,\left( {{C_2}} \right):y = {b^x}.lnb,\left( {b > a > 1} \right)\) và hai đường thẳng \(x = 1,x = 2\) tạo thành hình thang cong \(MNPQ\)có diện tích bằng \(4\). Giá trị nhỏ nhất của biểu thức \(P = 2b\) bằng

Cho \(y = f(x)\)xác định trên \(\left[ { – 4;4} \right]\) có đồ thị như hình vẽ. Biết \({S_1};\,{S_2};\,{S_3}\)có diện tích lần lượt là \(4;1;4\). Khi đó \(\int\limits_{ – 1}^1 {\left( {1 – x} \right)f’\left( {4x} \right)} \) bằng

Ngày 24/05/2021 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:TN THPT 2021, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, Tuong tu cau 48 de toan minh hoa

DẠNG TOÁN 48 : ỨNG DỤNG TÍCH PHÂN (TÍNH DIỆN TÍCH HÌNH PHẲNG, TỈ SỐ DIỆN TÍCH)   Theo đề tham khảo Toán 2021 ĐỀ BÀI: Cho \(y = f(x)\)xác định trên \(\left[ { - 4;4} \right]\) có đồ thị như hình vẽ. Biết \({S_1};\,{S_2};\,{S_3}\)có diện tích lần lượt là \(4;1;4\). Khi đó \(\int\limits_{ - 1}^1 {\left( {1 - x} \right)f'\left( {4x} \right)} \) … [Đọc thêm...] vềCho \(y = f(x)\)xác định trên \(\left[ { – 4;4} \right]\) có đồ thị như hình vẽ. Biết \({S_1};\,{S_2};\,{S_3}\)có diện tích lần lượt là \(4;1;4\). Khi đó \(\int\limits_{ – 1}^1 {\left( {1 – x} \right)f’\left( {4x} \right)} \) bằng

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 21
  • Trang 22
  • Trang 23
  • Trang 24
  • Trang 25
  • Interim pages omitted …
  • Trang 35
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.