• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Trắc nghiệm Giá trị lớn nhất và nhỏ nhất của hàm số

Một màn hình chữ nhật cao 1,4 m được đặt ở độ cao 1,8 m so với tầm mắt (tính từ đầu mép dưới của màn hình). Để nhìn rõ nhất phải xác định vị trí đứng sao cho góc nhìn lớn nhất. Hãy xác định vị trí đó. (\(\widehat {BOC}\) gọi là góc nhìn).

Ngày 08/10/2021 Thuộc chủ đề:Trắc nghiệm Giá trị lớn nhất và nhỏ nhất của hàm số Tag với:Trắc nghiệm GTLN GTNN vận dụng

Câu hỏi: Một màn hình chữ nhật cao 1,4 m được đặt ở độ cao 1,8 m so với tầm mắt (tính từ đầu mép dưới của màn hình). Để nhìn rõ nhất phải xác định vị trí đứng sao cho góc nhìn lớn nhất. Hãy xác định vị trí đó. (\(\widehat {BOC}\) gọi là góc nhìn). Lời giải Với bài toán này ta cần xác định \(OA\) sao cho góc \(\widehat {BOC}\) lớn nhất. Điều này xảy ra khi và chỉ khi … [Đọc thêm...] về

Một màn hình chữ nhật cao 1,4 m được đặt ở độ cao 1,8 m so với tầm mắt (tính từ đầu mép dưới của màn hình). Để nhìn rõ nhất phải xác định vị trí đứng sao cho góc nhìn lớn nhất. Hãy xác định vị trí đó. (\(\widehat {BOC}\) gọi là góc nhìn).

Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = 4{x^2} – 8\sqrt {2{x^2} + 3x + 2} + 6x + 2019\) trên đoạn [0;2]. Tính \(M + m\)

Ngày 08/10/2021 Thuộc chủ đề:Trắc nghiệm Giá trị lớn nhất và nhỏ nhất của hàm số Tag với:Trắc nghiệm GTLN GTNN vận dụng

Câu hỏi: Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = 4{x^2} - 8\sqrt {2{x^2} + 3x + 2} + 6x + 2019\) trên đoạn [0;2]. Tính \(M + m\) A. \(4026 + 8\sqrt 2 \). B. \(4016\). C. \(4022\). D. \(4026 - 8\sqrt 2 \). Lời giải Chọn C \(y = 4{x^2} - 8\sqrt {2{x^2} + 3x + 2} + 6x + 2019\)\( = 2(2{x^2} + 3x + 2) - 8\sqrt … [Đọc thêm...] về

Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = 4{x^2} – 8\sqrt {2{x^2} + 3x + 2} + 6x + 2019\) trên đoạn [0;2]. Tính \(M + m\)

Trong một kho có nhiều miếng tôn hình chữ nhật khác nhau đủ loại kích thước có cùng chu vi là 240 cm. Một bác thợ hàn dự định làm một chiếc thùng hình trụ không đáy từ một mảnh tôn trong số đó. Hỏi bác thợ hàn cần chọn miếng tôn có chiều rộng và chiều dài bằng bao nhiêu để thể tích chiếc thùng là lớn nhất?

Ngày 08/10/2021 Thuộc chủ đề:Trắc nghiệm Giá trị lớn nhất và nhỏ nhất của hàm số Tag với:Trắc nghiệm GTLN GTNN vận dụng

Câu hỏi: Trong một kho có nhiều miếng tôn hình chữ nhật khác nhau đủ loại kích thước có cùng chu vi là 240 cm. Một bác thợ hàn dự định làm một chiếc thùng hình trụ không đáy từ một mảnh tôn trong số đó. Hỏi bác thợ hàn cần chọn miếng tôn có chiều rộng và chiều dài bằng bao nhiêu để thể tích chiếc thùng là lớn nhất? A. 40 cm; 80 cm. B. 50 cm; 70 cm. C. 60 cm; 60 … [Đọc thêm...] về

Trong một kho có nhiều miếng tôn hình chữ nhật khác nhau đủ loại kích thước có cùng chu vi là 240 cm. Một bác thợ hàn dự định làm một chiếc thùng hình trụ không đáy từ một mảnh tôn trong số đó. Hỏi bác thợ hàn cần chọn miếng tôn có chiều rộng và chiều dài bằng bao nhiêu để thể tích chiếc thùng là lớn nhất?

Gọi \(M\), \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right) = 4{\left( {\sin x + {\rm{cos}}x} \right)^4} + \frac{2}{{{{\sin }^2}x.{\rm{co}}{{\rm{s}}^2}x}}\)trên đoạn \(\left[ {\frac{\pi }{{12}};\,\frac{\pi }{4}} \right]\). Khi đó tỉ số \(\frac{M}{m}\) thuộc khoảng nào sau đây?

Ngày 07/10/2021 Thuộc chủ đề:Trắc nghiệm Giá trị lớn nhất và nhỏ nhất của hàm số Tag với:Trắc nghiệm GTLN GTNN vận dụng

Câu hỏi: Gọi \(M\), \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right) = 4{\left( {\sin x + {\rm{cos}}x} \right)^4} + \frac{2}{{{{\sin }^2}x.{\rm{co}}{{\rm{s}}^2}x}}\)trên đoạn \(\left[ {\frac{\pi }{{12}};\,\frac{\pi }{4}} \right]\). Khi đó tỉ số \(\frac{M}{m}\) thuộc khoảng nào sau đây? A. \(\left( {1;\,\frac{3}{2}} \right)\). B. … [Đọc thêm...] về

Gọi \(M\), \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right) = 4{\left( {\sin x + {\rm{cos}}x} \right)^4} + \frac{2}{{{{\sin }^2}x.{\rm{co}}{{\rm{s}}^2}x}}\)trên đoạn \(\left[ {\frac{\pi }{{12}};\,\frac{\pi }{4}} \right]\). Khi đó tỉ số \(\frac{M}{m}\) thuộc khoảng nào sau đây?

Cho hai số thực dương \(x\),\(y\) thay đổi thỏa mãn đẳng thức: \(\left( {xy – 1} \right){2^{2xy – 1}} = \left( {{x^2} + y} \right){2^{{x^2} + y}}\). Tìm giá trị nhỏ nhất \({y_{\min }}\) của \(y\).

Ngày 07/10/2021 Thuộc chủ đề:Trắc nghiệm Giá trị lớn nhất và nhỏ nhất của hàm số Tag với:Trắc nghiệm GTLN GTNN vận dụng

Câu hỏi: Cho hai số thực dương \(x\),\(y\) thay đổi thỏa mãn đẳng thức: \(\left( {xy - 1} \right){2^{2xy - 1}} = \left( {{x^2} + y} \right){2^{{x^2} + y}}\). Tìm giá trị nhỏ nhất \({y_{\min }}\) của \(y\). A. \({y_{\min }} = 3\). B. \({y_{\min }} = \sqrt 3 \). C. \({y_{\min }} = 1\). D. \({y_{\min }} = 2\). Lời giải Chọn D Do \(x\),\(y\) là số thực dương … [Đọc thêm...] về

Cho hai số thực dương \(x\),\(y\) thay đổi thỏa mãn đẳng thức: \(\left( {xy – 1} \right){2^{2xy – 1}} = \left( {{x^2} + y} \right){2^{{x^2} + y}}\). Tìm giá trị nhỏ nhất \({y_{\min }}\) của \(y\).

Cho các số thực \(x,y,z\) thỏa mãn \({\log _{16}}\left( {\frac{{x + y + z}}{{2{x^2} + 2{y^2} + 2{z^2} + 1}}} \right) = x\left( {x – 2} \right) + y\left( {y – 2} \right) + z\left( {z – 2} \right)\). Tổng giá trị lớn nhất và nhỏ nhất của biểu thức \(F = \frac{{x + y – z}}{{x + y + z}}\) bằng?

Ngày 07/10/2021 Thuộc chủ đề:Trắc nghiệm Giá trị lớn nhất và nhỏ nhất của hàm số Tag với:Trắc nghiệm GTLN GTNN vận dụng

Câu hỏi: Cho các số thực \(x,y,z\) thỏa mãn \({\log _{16}}\left( {\frac{{x + y + z}}{{2{x^2} + 2{y^2} + 2{z^2} + 1}}} \right) = x\left( {x - 2} \right) + y\left( {y - 2} \right) + z\left( {z - 2} \right)\). Tổng giá trị lớn nhất và nhỏ nhất của biểu thức \(F = \frac{{x + y - z}}{{x + y + z}}\) bằng? A. \( - \frac{1}{3}\). B. \(\frac{2}{3}\). C. \( - … [Đọc thêm...] về

Cho các số thực \(x,y,z\) thỏa mãn \({\log _{16}}\left( {\frac{{x + y + z}}{{2{x^2} + 2{y^2} + 2{z^2} + 1}}} \right) = x\left( {x – 2} \right) + y\left( {y – 2} \right) + z\left( {z – 2} \right)\). Tổng giá trị lớn nhất và nhỏ nhất của biểu thức \(F = \frac{{x + y – z}}{{x + y + z}}\) bằng?

Ông A dự định sử dụng hết \(6,5\,{m^2}\)kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép có kích thước không đáng kể). Bể cá có dung tích lớn nhất bằng bao nhiêu (kết quả làm tròn đến hàng phần trăm)? (Trích đề thi chính thức THPT năm 2018).

Ngày 07/10/2021 Thuộc chủ đề:Trắc nghiệm Giá trị lớn nhất và nhỏ nhất của hàm số Tag với:Trắc nghiệm GTLN GTNN vận dụng

Câu hỏi: Ông A dự định sử dụng hết \(6,5\,{m^2}\)kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép có kích thước không đáng kể). Bể cá có dung tích lớn nhất bằng bao nhiêu (kết quả làm tròn đến hàng phần trăm)? (Trích đề thi chính thức THPT năm 2018). A. \(2,26\,{m^3}\). B. \(1,61\,{m^3}\). C. … [Đọc thêm...] về

Ông A dự định sử dụng hết \(6,5\,{m^2}\)kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép có kích thước không đáng kể). Bể cá có dung tích lớn nhất bằng bao nhiêu (kết quả làm tròn đến hàng phần trăm)? (Trích đề thi chính thức THPT năm 2018).

Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = \sqrt {x + 3} + \sqrt {6 – x} \). Khi đó \(M.\,m\) bằng

Ngày 07/10/2021 Thuộc chủ đề:Trắc nghiệm Giá trị lớn nhất và nhỏ nhất của hàm số Tag với:Trắc nghiệm GTLN GTNN vận dụng

Câu hỏi: Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = \sqrt {x + 3} + \sqrt {6 - x} \). Khi đó \(M.\,m\) bằng A. \(3\). B. \(3 + 3\sqrt 2 \). C. \(3\sqrt 2 \). D. \(9\sqrt 2 \). Lời giải Chọn D Điều kiện xác định của hàm số là \(\left\{ \begin{array}{l}x + 3 \ge 0\\6 - x \ge 0\end{array} \right. \Leftrightarrow … [Đọc thêm...] về

Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = \sqrt {x + 3} + \sqrt {6 – x} \). Khi đó \(M.\,m\) bằng

Cho hàm số \(y = f\left( x \right)\)có đồ thị \(y = f’\left( x \right)\)như hình vẽ:

Xét hàm \(y = g\left( x \right) = f\left( x \right) – \frac{1}{3}{x^3} – \frac{3}{4}{x^2} + \frac{3}{2}x + 2018\). Mệnh đề nào sau đây đúng?

Ngày 07/10/2021 Thuộc chủ đề:Trắc nghiệm Giá trị lớn nhất và nhỏ nhất của hàm số Tag với:Trắc nghiệm GTLN GTNN vận dụng

Câu hỏi: Cho hàm số \(y = f\left( x \right)\)có đồ thị \(y = f'\left( x \right)\)như hình vẽ: Xét hàm \(y = g\left( x \right) = f\left( x \right) - \frac{1}{3}{x^3} - \frac{3}{4}{x^2} + \frac{3}{2}x + 2018\). Mệnh đề nào sau đây đúng? A. \(\mathop {\min }\limits_{\left[ { - 3;1} \right]} g\left( x \right) = g\left( { - 1} \right)\). B. \(\mathop {\min … [Đọc thêm...] về

Cho hàm số \(y = f\left( x \right)\)có đồ thị \(y = f’\left( x \right)\)như hình vẽ:

Xét hàm \(y = g\left( x \right) = f\left( x \right) – \frac{1}{3}{x^3} – \frac{3}{4}{x^2} + \frac{3}{2}x + 2018\). Mệnh đề nào sau đây đúng?

Cho hình chóp \(S.ABC\). Mặt phẳng \(\left( P \right)\) song song với đáy cắt các cạnh \(SA\), \(SB\), \(SC\) lần lượt tại \(D\), \(E\), \(F\). Gọi \({D_1}\), \({E_1}\), \({F_1}\) tương ứng là hình chiếu vuông góc của \(D\), \(E\), \(F\) lên mặt phẳng \(\left( {ABC} \right)\)(tham khảo hình vẽ bên). \(V\) là thể tích khối chóp \(S.ABC\). Giá trị lớn nhất của thể tích khối đa diện \(DEF{D_1}{E_1}{F_1}\) bằng:

Ngày 07/10/2021 Thuộc chủ đề:Trắc nghiệm Giá trị lớn nhất và nhỏ nhất của hàm số Tag với:Trắc nghiệm GTLN GTNN vận dụng

Câu hỏi: Cho hình chóp \(S.ABC\). Mặt phẳng \(\left( P \right)\) song song với đáy cắt các cạnh \(SA\), \(SB\), \(SC\) lần lượt tại \(D\), \(E\), \(F\). Gọi \({D_1}\), \({E_1}\), \({F_1}\) tương ứng là hình chiếu vuông góc của \(D\), \(E\), \(F\) lên mặt phẳng \(\left( {ABC} \right)\)(tham khảo hình vẽ bên). \(V\) là thể tích khối chóp \(S.ABC\). Giá trị lớn nhất của thể tích … [Đọc thêm...] về

Cho hình chóp \(S.ABC\). Mặt phẳng \(\left( P \right)\) song song với đáy cắt các cạnh \(SA\), \(SB\), \(SC\) lần lượt tại \(D\), \(E\), \(F\). Gọi \({D_1}\), \({E_1}\), \({F_1}\) tương ứng là hình chiếu vuông góc của \(D\), \(E\), \(F\) lên mặt phẳng \(\left( {ABC} \right)\)(tham khảo hình vẽ bên). \(V\) là thể tích khối chóp \(S.ABC\). Giá trị lớn nhất của thể tích khối đa diện \(DEF{D_1}{E_1}{F_1}\) bằng:

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 35
  • Trang 36
  • Trang 37
  • Trang 38
  • Trang 39
  • Interim pages omitted …
  • Trang 57
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.