• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

Trong một kho có nhiều miếng tôn hình chữ nhật khác nhau đủ loại kích thước có cùng chu vi là 240 cm. Một bác thợ hàn dự định làm một chiếc thùng hình trụ không đáy từ một mảnh tôn trong số đó. Hỏi bác thợ hàn cần chọn miếng tôn có chiều rộng và chiều dài bằng bao nhiêu để thể tích chiếc thùng là lớn nhất?

Đăng ngày: 08/10/2021 Biên tập: admin Thuộc chủ đề:Trắc nghiệm Giá trị lớn nhất và nhỏ nhất của hàm số Tag với:Trắc nghiệm GTLN GTNN vận dụng

adsense
<p>Trong một kho có nhiều miếng tôn hình chữ nhật khác nhau đủ loại kích thước có cùng chu vi là 240 cm. Một bác thợ hàn dự định làm một chiếc thùng hình trụ không đáy từ một mảnh tôn trong số đó. Hỏi bác thợ hàn cần chọn miếng tôn có chiều rộng và chiều dài bằng bao nhiêu để thể tích chiếc thùng là lớn nhất?</p> 1 Câu hỏi:

Trong một kho có nhiều miếng tôn hình chữ nhật khác nhau đủ loại kích thước có cùng chu vi là 240 cm. Một bác thợ hàn dự định làm một chiếc thùng hình trụ không đáy từ một mảnh tôn trong số đó. Hỏi bác thợ hàn cần chọn miếng tôn có chiều rộng và chiều dài bằng bao nhiêu để thể tích chiếc thùng là lớn nhất?

A. 40 cm; 80 cm.

B. 50 cm; 70 cm.

C. 60 cm; 60 cm.

D. 30 cm; 90 cm.

Lời giải

Chọn A

Gọi kích thước một cạnh của miếng tôn là \(x\left( {cm} \right);\,\)\(\left( {0 < x < 120} \right)\).

Khi đó kích thước còn lại của miếng tôn là: \(120 – x\,\left( {cm} \right)\).

Ta có hình vẽ tương ứng:

C:\Users\Win7SP1-64\Desktop\H2.png

Giả sử bác thợ hàn quấn hình trụ quanh cạnh \(x\,\), khi đó chu vi đáy hình trụ là \(x\left( {cm} \right)\).

Suy ra bán kính đáy hình trụ là: \(R = \frac{x}{{2\pi }}\); chiều cao hình trụ là: \(h = 120 – x\).

adsense

Thể tích chiếc thùng hình trụ là: \(V = \pi {R^2}h = \frac{{ – {x^3} + 120{x^2}}}{{4{\pi ^2}}}\).

Cách 1:

Xét hàm số: \(f\left( x \right) = – {x^3} + 120{x^2};x \in \left( {0;120} \right)\).

Ta có: \(f’\left( x \right) = – 3{x^2} + 240x.\) Cho \(f’\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0{\rm{ }}\left( l \right)\\x = 80{\rm{ }}\left( n \right)\end{array} \right.\)

BBT:

<p>Trong một kho có nhiều miếng tôn hình chữ nhật khác nhau đủ loại kích thước có cùng chu vi là 240 cm. Một bác thợ hàn dự định làm một chiếc thùng hình trụ không đáy từ một mảnh tôn trong số đó. Hỏi bác thợ hàn cần chọn miếng tôn có chiều rộng và chiều dài bằng bao nhiêu để thể tích chiếc thùng là lớn nhất?</p> 2

Dựa vào bảng biến thiên, ta thấy \(f\left( x \right) = – {x^3} + 120{x^2};x \in \left( {0;120} \right)\) lớn nhất khi \(x = 80\).

Khi đó chiều dài của miếng tôn là 80 cm, chiều rộng của miếng tôn là 40 cm.

Cách 2:

Bấm máy tính, đối với dòng máy fx – 580 VN X.

Ta nhập Mode 8 \(f\left( x \right) = – {x^3} + 120{x^2}\) bắt đầu: 0, kết thúc: 120, bước: 10.

Ta nhận được kết quả tương tự.

======= Thuộc mục: Trắc nghiệm Giá trị lớn nhất và nhỏ nhất của hàm số

Thuộc chủ đề:Trắc nghiệm Giá trị lớn nhất và nhỏ nhất của hàm số Tag với:Trắc nghiệm GTLN GTNN vận dụng

Bài liên quan:

  1. Cho hàm số \(f(x)\) liên tục trên \(\left( {0; + \infty } \right)\), thỏa mãn \(3x.f\left( x \right) – {x^2}.{f’}\left( x \right) = 2{f^2}\left( x \right),f(x) \ne 0\) với \(x \in \left( {0; + \infty } \right)\) và \(f(1) = \frac{1}{2}\). Gọi \(M\), \(m\) lần lượt là giá trị lớn nhất giá trị nhỏ nhất của hàm số \(y = f(x)\) trên đoạn \(\left[ {1;2} \right]\). Tính \(M + m\).
  2. Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ {0;\,10} \right]\) để tập nghiệm của bất phương trình \(\sqrt {\log _2^2x + 3{{\log }_{\frac{1}{2}}}{x^2} – 7} < m\left( {{{\log }_4}{x^2} – 7} \right)\) chứa khoảng \(\left( {256;\, + \infty } \right)\).

  3. Tìm \(m\) để hệ sau có nghiệm \(\left\{ \begin{array}{l}4{x^2} + \sqrt {3x} \ge \sqrt {x + 1} + 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\x\left( {x + 5} \right)\left( {2x – 1} \right) + {\left( {{x^3} – 2x + m} \right)^2} = 0\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\)

  4. Có bao nhiêu giá trị nguyên của \(m\) để phương trình: \(2 + 2\sin 2x – m{\left( {1 + \cos x} \right)^2} = 0\) có nghiệm \(x \in \left[ { – \frac{\pi }{2};\frac{\pi }{2}} \right]\)?

  5. Cho hai số thực \(x\), \(y\) thỏa mãn \(x \ge 0\), \(y \ge 1\); \(x + y = 3\). Giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P = {x^3} + 2{y^2} + 3{x^2} + 4xy – 5x\) lần lượt bằng

  6. Đề bài: Cho đa thức \(f\left( x \right)\) thỏa mãn \(f\left( x \right) – xf\left( {1 – x} \right) = {x^4} – 5{x^3} + 12{x^2} – 4\) với mọi x thuộc \(D = \left\{ {x \in \mathbb{R}:{x^4} – 10{x^2} + 9 \le 0} \right\}\). Gọi \(M,m\) lần lượt là GTLN, GTNN của \(f\left( x \right)\) trên tập \(D\). Tính giá trị của biểu thức \(S = 21m + 6M + 2019\)

  7. Cho các số thực \(x,y\) thỏa mãn điều kiện \(0 \le x \le 2\) và \({2^{x + y + 1}} = {4^x} + \frac{{x – y – 1}}{{{2^y}}}\). Tìm giá trị nhỏ nhất của giá trị lớn nhất của biểu thức \(P = \left| {\frac{{{x^2} – y + m\left( {2x – y} \right)}}{{x + 1}}} \right|\) khi \(m\) thay đổi?

  8. Giá trị nhỏ nhất hàm số \(f(x) = {x^4} – {x^2} + 13\) trên \(\left[ { – 2\,;\,3} \right]\) là phân số tối giản có dạng \(\frac{a}{b}\). Khi đó \(a + b\) bằng

  9. Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) có đồ thị \(y = f’\left( x \right)\) như hình vẽ. Đặt \(g\left( x \right) = 2f\left( x \right) – {\left( {x – 1} \right)^2}\). Khi đó giá trị nhỏ nhất của hàm số \(y = g\left( x \right)\) trên đoạn \(\left[ { – 3\,;\,3} \right]\) bằng

  10. Cho các số thực \(0 < y < 1 \le x \le 3\) thỏa mãn \({x^2}{y^2} – {x^2} – {y^2} + 3xy – x + y = 0\). Giá trị lớn nhất, nhỏ nhất của biểu thức \(P = 2x + y\) là \(M,\,m\). Tính \(M + m\)?

  11. Gọi \(M,m\) lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y = \frac{{\sin x + \cos x + 1}}{{\sqrt {2 + \sin 2x} }}\) với \(x \in \mathbb{R}\). Khi đó \(M + \sqrt 3 m\) bằng

  12. Cho \(m = {\log _a}\sqrt[3]{{ab}}\) với \(a > 1\), \(b > 1\) và \(P = \log _a^2b + 16\,{\log _b}a\). Để \(P\) đạt giá trị nhỏ nhất thì giá trị \(m\) thuộc khoảng

  13. Một doanh nghiệp kinh doanh xe máy mỗi tháng bình quân bán được 1000 chiếc xe cùng loại với giá 35 triệu đồng mỗi chiếc. Để gia tăng lợi nhuận nên doanh nghiệp quyết định thay đổi giá bán. Theo thông kê của doanh nghiệp, nếu giảm giá 1 triệu đồng/chiếc thì doanh số sẽ tăng thêm 50 chiếc so với bình quân và ngược lại nếu tăng giá bán 1 triệu đồng/chiếc thì doanh số giảm tương ứng 50 chiếc so với bình quân, giá gốc mỗi chiếc xe là 30 triệu đồng, mỗi chiếc xe bán ra được hưởng chiếc khấu 8%(trên giá gốc) từ công ty. Hỏi doanh nghiệp phải bán với giá bao nhiêu để được lợi nhuận cao nhất.

  14. Cho hàm số \(f(x) = \left| {8{{\cos }^4}x + a{{\cos }^2}x + b} \right|\), trong đó \(a\), \(b\) là các tham số thực. Gọi \(M\) là giá trị lớn nhất của hàm số. Tính tổng \(a + b\) khi \(M\) nhận giá trị nhỏ nhất.

  15. Có bao nhiêu giá trị của \(m\) để giá trị nhỏ nhất của hàm số \(f\left( x \right) = \left| {{{\rm{e}}^{2x}} – 4{{\rm{e}}^x} + m} \right|\) trên đoạn \(\left[ {0\,;\,\ln 4} \right]\) bằng \(6\)?

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2023) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.