Câu hỏi:
Giá trị nhỏ nhất hàm số \(f(x) = {x^4} - {x^2} + 13\) trên \(\left[ { - 2\,;\,3} \right]\) là phân số tối giản có dạng \(\frac{a}{b}\). Khi đó \(a + b\) bằng
A. \(53\).
B. \(55\).
C. \(57\).
D. \(59\).
Lời giải
Chọn B
Tập xác định: \(D = \mathbb{R}\).
Ta có\(f'(x) = 4{x^3} - 2x\). Khi đó \(f'(x) = 0\) \( \Leftrightarrow \)\(\left[ … [Đọc thêm...] về Giá trị nhỏ nhất hàm số \(f(x) = {x^4} – {x^2} + 13\) trên \(\left[ { – 2\,;\,3} \right]\) là phân số tối giản có dạng \(\frac{a}{b}\). Khi đó \(a + b\) bằng
Trắc nghiệm Giá trị lớn nhất và nhỏ nhất của hàm số
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) có đồ thị \(y = f’\left( x \right)\) như hình vẽ. Đặt \(g\left( x \right) = 2f\left( x \right) – {\left( {x – 1} \right)^2}\). Khi đó giá trị nhỏ nhất của hàm số \(y = g\left( x \right)\) trên đoạn \(\left[ { – 3\,;\,3} \right]\) bằng
Câu hỏi:
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) có đồ thị \(y = f'\left( x \right)\) như hình vẽ. Đặt \(g\left( x \right) = 2f\left( x \right) - {\left( {x - 1} \right)^2}\). Khi đó giá trị nhỏ nhất của hàm số \(y = g\left( x \right)\) trên đoạn \(\left[ { - 3\,;\,3} \right]\) bằng
A. \(g\left( 0 \right)\).
B. \(g\left( 1 \right)\).
C. … [Đọc thêm...] về Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) có đồ thị \(y = f’\left( x \right)\) như hình vẽ. Đặt \(g\left( x \right) = 2f\left( x \right) – {\left( {x – 1} \right)^2}\). Khi đó giá trị nhỏ nhất của hàm số \(y = g\left( x \right)\) trên đoạn \(\left[ { – 3\,;\,3} \right]\) bằng
Cho các số thực \(0 < y < 1 \le x \le 3\) thỏa mãn \({x^2}{y^2} – {x^2} – {y^2} + 3xy – x + y = 0\). Giá trị lớn nhất, nhỏ nhất của biểu thức \(P = 2x + y\) là \(M,\,m\). Tính \(M + m\)?
Câu hỏi:
Cho các số thực \(0 < y < 1 \le x \le 3\) thỏa mãn \({x^2}{y^2} - {x^2} - {y^2} + 3xy - x + y = 0\). Giá trị lớn nhất, nhỏ nhất của biểu thức \(P = 2x + y\) là \(M,\,m\). Tính \(M + m\)?
A. \(12\)
B. \(\frac{5}{2}\)
C. \(\frac{{27}}{4}\)
D. \(\frac{{37}}{4}\)
Lời giải
Chọn D
Ta có: \({x^2}{y^2} - {x^2} - {y^2} + 3xy - x + y = 0\)\( … [Đọc thêm...] về Cho các số thực \(0 < y < 1 \le x \le 3\) thỏa mãn \({x^2}{y^2} – {x^2} – {y^2} + 3xy – x + y = 0\). Giá trị lớn nhất, nhỏ nhất của biểu thức \(P = 2x + y\) là \(M,\,m\). Tính \(M + m\)?
Gọi \(M,m\) lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y = \frac{{\sin x + \cos x + 1}}{{\sqrt {2 + \sin 2x} }}\) với \(x \in \mathbb{R}\). Khi đó \(M + \sqrt 3 m\) bằng
Câu hỏi:
Gọi \(M,m\) lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y = \frac{{\sin x + \cos x + 1}}{{\sqrt {2 + \sin 2x} }}\) với \(x \in \mathbb{R}\). Khi đó \(M + \sqrt 3 m\) bằng
A. \(1 + 2\sqrt 2 \).
B. \( - 1\).
C. \(1\).
D. \(2\).
Lời giải
Chọn C
Đặt \(t = \sin x + \cos x\) \( \Rightarrow \left\{ \begin{array}{l} - \sqrt 2 \le t \le … [Đọc thêm...] về Gọi \(M,m\) lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y = \frac{{\sin x + \cos x + 1}}{{\sqrt {2 + \sin 2x} }}\) với \(x \in \mathbb{R}\). Khi đó \(M + \sqrt 3 m\) bằng
Cho \(m = {\log _a}\sqrt[3]{{ab}}\) với \(a > 1\), \(b > 1\) và \(P = \log _a^2b + 16\,{\log _b}a\). Để \(P\) đạt giá trị nhỏ nhất thì giá trị \(m\) thuộc khoảng
Câu hỏi:
Cho \(m = {\log _a}\sqrt[3]{{ab}}\) với \(a > 1\), \(b > 1\) và \(P = \log _a^2b + 16\,{\log _b}a\). Để \(P\) đạt giá trị nhỏ nhất thì giá trị \(m\) thuộc khoảng
A. \(\left( {\frac{1}{2}\,;\,1} \right)\).
B. \(\left( { - 1\,;\,3} \right)\).
C. \(\left( {1\,;\,3} \right)\).
D. \(\left( {3;\,8} \right)\).
Lời giải
Chọn B
Với \(a > 1\), \(b … [Đọc thêm...] về Cho \(m = {\log _a}\sqrt[3]{{ab}}\) với \(a > 1\), \(b > 1\) và \(P = \log _a^2b + 16\,{\log _b}a\). Để \(P\) đạt giá trị nhỏ nhất thì giá trị \(m\) thuộc khoảng
Một doanh nghiệp kinh doanh xe máy mỗi tháng bình quân bán được 1000 chiếc xe cùng loại với giá 35 triệu đồng mỗi chiếc. Để gia tăng lợi nhuận nên doanh nghiệp quyết định thay đổi giá bán. Theo thông kê của doanh nghiệp, nếu giảm giá 1 triệu đồng/chiếc thì doanh số sẽ tăng thêm 50 chiếc so với bình quân và ngược lại nếu tăng giá bán 1 triệu đồng/chiếc thì doanh số giảm tương ứng 50 chiếc so với bình quân, giá gốc mỗi chiếc xe là 30 triệu đồng, mỗi chiếc xe bán ra được hưởng chiếc khấu 8%(trên giá gốc) từ công ty. Hỏi doanh nghiệp phải bán với giá bao nhiêu để được lợi nhuận cao nhất.
Câu hỏi:
Một doanh nghiệp kinh doanh xe máy mỗi tháng bình quân bán được 1000 chiếc xe cùng loại với giá 35 triệu đồng mỗi chiếc. Để gia tăng lợi nhuận nên doanh nghiệp quyết định thay đổi giá bán. Theo thông kê của doanh nghiệp, nếu giảm giá 1 triệu đồng/chiếc thì doanh số sẽ tăng thêm 50 chiếc so với bình quân và ngược lại nếu tăng giá bán 1 triệu đồng/chiếc thì doanh số … [Đọc thêm...] về Một doanh nghiệp kinh doanh xe máy mỗi tháng bình quân bán được 1000 chiếc xe cùng loại với giá 35 triệu đồng mỗi chiếc. Để gia tăng lợi nhuận nên doanh nghiệp quyết định thay đổi giá bán. Theo thông kê của doanh nghiệp, nếu giảm giá 1 triệu đồng/chiếc thì doanh số sẽ tăng thêm 50 chiếc so với bình quân và ngược lại nếu tăng giá bán 1 triệu đồng/chiếc thì doanh số giảm tương ứng 50 chiếc so với bình quân, giá gốc mỗi chiếc xe là 30 triệu đồng, mỗi chiếc xe bán ra được hưởng chiếc khấu 8%(trên giá gốc) từ công ty. Hỏi doanh nghiệp phải bán với giá bao nhiêu để được lợi nhuận cao nhất.
Cho hàm số \(f(x) = \left| {8{{\cos }^4}x + a{{\cos }^2}x + b} \right|\), trong đó \(a\), \(b\) là các tham số thực. Gọi \(M\) là giá trị lớn nhất của hàm số. Tính tổng \(a + b\) khi \(M\) nhận giá trị nhỏ nhất.
Câu hỏi:
Cho hàm số \(f(x) = \left| {8{{\cos }^4}x + a{{\cos }^2}x + b} \right|\), trong đó \(a\), \(b\) là các tham số thực. Gọi \(M\) là giá trị lớn nhất của hàm số. Tính tổng \(a + b\) khi \(M\) nhận giá trị nhỏ nhất.
A. \(a + b = - 7\).
B. \(a + b = - 9\).
C. \(a + b = 0\).
D. \(a + b = - 8\).
Lời giải
Chọn A
Xét \(f(x) = \left| {8{{\cos }^4}x + … [Đọc thêm...] về Cho hàm số \(f(x) = \left| {8{{\cos }^4}x + a{{\cos }^2}x + b} \right|\), trong đó \(a\), \(b\) là các tham số thực. Gọi \(M\) là giá trị lớn nhất của hàm số. Tính tổng \(a + b\) khi \(M\) nhận giá trị nhỏ nhất.
Có bao nhiêu giá trị của \(m\) để giá trị nhỏ nhất của hàm số \(f\left( x \right) = \left| {{{\rm{e}}^{2x}} – 4{{\rm{e}}^x} + m} \right|\) trên đoạn \(\left[ {0\,;\,\ln 4} \right]\) bằng \(6\)?
Câu hỏi:
Có bao nhiêu giá trị của \(m\) để giá trị nhỏ nhất của hàm số \(f\left( x \right) = \left| {{{\rm{e}}^{2x}} - 4{{\rm{e}}^x} + m} \right|\) trên đoạn \(\left[ {0\,;\,\ln 4} \right]\) bằng \(6\)?
A. \(3\).
B. \(4\).
C. \(1\).
D. \(2\).
Lời giải
Chọn D
Xét \(x \in \left[ {0\,;\,\ln 4} \right]\). Đặt \(t = {{\rm{e}}^x} \Rightarrow t \in \left[ … [Đọc thêm...] về Có bao nhiêu giá trị của \(m\) để giá trị nhỏ nhất của hàm số \(f\left( x \right) = \left| {{{\rm{e}}^{2x}} – 4{{\rm{e}}^x} + m} \right|\) trên đoạn \(\left[ {0\,;\,\ln 4} \right]\) bằng \(6\)?
Cho hàm số \(f\left( x \right) = {x^2} – 2x\). Có bao nhiêu giá trị \(m\) để giá trị lớn nhất của hàm số \(\left| {f\left( {1 + \sin \,x} \right) + m} \right|\) bằng 5.
Câu hỏi:
Cho hàm số \(f\left( x \right) = {x^2} - 2x\). Có bao nhiêu giá trị \(m\) để giá trị lớn nhất của hàm số \(\left| {f\left( {1 + \sin \,x} \right) + m} \right|\) bằng 5.
A. 0.
B. 2.
C. 4.
D. 5.
Lời giải
Chọn B
Đặt \(t = 1 + \sin \,x\). Suy ra \(t \in \left[ {0;2} \right]\). Ta có:
\(\left| {f\left( {1 + \sin \,x} \right) + m} \right|\)\( = … [Đọc thêm...] về Cho hàm số \(f\left( x \right) = {x^2} – 2x\). Có bao nhiêu giá trị \(m\) để giá trị lớn nhất của hàm số \(\left| {f\left( {1 + \sin \,x} \right) + m} \right|\) bằng 5.
Tính tổng của giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = \cos x – \frac{2}{3}{\cos ^3}x\) trên đoạn \(\left[ {0;\pi } \right]\).
Câu hỏi:
Tính tổng của giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = \cos x - \frac{2}{3}{\cos ^3}x\) trên đoạn \(\left[ {0;\pi } \right]\).
A. \(\frac{{\sqrt 2 }}{3}\).
B. \(\frac{2}{3}\).
C. \(0\).
D. \(\frac{{2\sqrt 2 }}{3}\).
Lời giải
Chọn C
Xét hàm số \(y = f\left( x \right) = \cos x - \frac{2}{3}{\cos ^3}x\) trên đoạn \(\left[ {0;\pi } … [Đọc thêm...] về Tính tổng của giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = \cos x – \frac{2}{3}{\cos ^3}x\) trên đoạn \(\left[ {0;\pi } \right]\).
