• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Trắc nghiệm Giá trị lớn nhất và nhỏ nhất của hàm số

Cho hàm số \(y = f(x) = {e^{{x^2}}} + \sqrt[3]{{{x^4} – 1}}\). Xét các mệnh đề:

(I): Hàm số có tập xác định là \(D = [ – 1;1]\).

(II): Hàm số có tập xác định là \(D = \mathbb{R}\).

(III): Hàm số không có giá trị lớn nhất, giá trị nhỏ nhất.

(IV): Giá trị nhỏ nhất của hàm số bằng 0.

Số mệnh đề đúng là:

Ngày 06/10/2021 Thuộc chủ đề:Trắc nghiệm Giá trị lớn nhất và nhỏ nhất của hàm số Tag với:Trắc nghiệm GTLN GTNN vận dụng

Câu hỏi: Cho hàm số \(y = f(x) = {e^{{x^2}}} + \sqrt[3]{{{x^4} - 1}}\). Xét các mệnh đề: (I): Hàm số có tập xác định là \(D = [ - 1;1]\). (II): Hàm số có tập xác định là \(D = \mathbb{R}\). (III): Hàm số không có giá trị lớn nhất, giá trị nhỏ nhất. (IV): Giá trị nhỏ nhất của hàm số bằng 0. Số mệnh đề đúng là: A. 1. B. 4. C. 3. D. 2. Lời … [Đọc thêm...] về

Cho hàm số \(y = f(x) = {e^{{x^2}}} + \sqrt[3]{{{x^4} – 1}}\). Xét các mệnh đề:

(I): Hàm số có tập xác định là \(D = [ – 1;1]\).

(II): Hàm số có tập xác định là \(D = \mathbb{R}\).

(III): Hàm số không có giá trị lớn nhất, giá trị nhỏ nhất.

(IV): Giá trị nhỏ nhất của hàm số bằng 0.

Số mệnh đề đúng là:

Gọi \(S\) là tập hợp tất cả các số nguyên \(m\) để hàm số \(y = \left| {\frac{1}{4}{x^4} – \frac{{19}}{2}{x^2} + 30x + m} \right|\) có giá trị lớn nhất trên đoạn \(\left[ {0\,;\,2} \right]\) không vượt quá \(20\). Số phần tử của tập hợp \(S\) bằng?

Ngày 06/10/2021 Thuộc chủ đề:Trắc nghiệm Giá trị lớn nhất và nhỏ nhất của hàm số Tag với:Trắc nghiệm GTLN GTNN vận dụng

Câu hỏi: Gọi \(S\) là tập hợp tất cả các số nguyên \(m\) để hàm số \(y = \left| {\frac{1}{4}{x^4} - \frac{{19}}{2}{x^2} + 30x + m} \right|\) có giá trị lớn nhất trên đoạn \(\left[ {0\,;\,2} \right]\) không vượt quá \(20\). Số phần tử của tập hợp \(S\) bằng? A. 12. B. 13. C. 14. D. 15. Lời giải Chọn D Đặt \(f\left( x \right) = y = \left| {\frac{1}{4}{x^4} … [Đọc thêm...] về

Gọi \(S\) là tập hợp tất cả các số nguyên \(m\) để hàm số \(y = \left| {\frac{1}{4}{x^4} – \frac{{19}}{2}{x^2} + 30x + m} \right|\) có giá trị lớn nhất trên đoạn \(\left[ {0\,;\,2} \right]\) không vượt quá \(20\). Số phần tử của tập hợp \(S\) bằng?

Một ngọn hải đăng đặt tại vị trí \(A\) cách bờ biển một khoảng \(AB = 4\left( {km} \right)\). Trên bờ biển có một cái kho ở vị trí \(C\) cách \(B\) một khoảng \(BC = 7\left( {km} \right)\). Người canh hải đăng phải chèo thuyền từ vị trí \(A\) đến vị trí \(M\) trên bờ biển với vận tốc \(6\left( {km/h} \right)\) rồi đi xe đạp từ \(M\) đến \(C\) với vận tốc \(10\left( {km/h} \right)\) (hình vẽ bên). Xác định khoảng cách từ \(M\) đến \(C\) để người đó đi từ \(A\) đến \(C\) là nhanh nhất.

.

Ngày 06/10/2021 Thuộc chủ đề:Trắc nghiệm Giá trị lớn nhất và nhỏ nhất của hàm số Tag với:Trắc nghiệm GTLN GTNN vận dụng

Câu hỏi: Một ngọn hải đăng đặt tại vị trí \(A\) cách bờ biển một khoảng \(AB = 4\left( {km} \right)\). Trên bờ biển có một cái kho ở vị trí \(C\) cách \(B\) một khoảng \(BC = 7\left( {km} \right)\). Người canh hải đăng phải chèo thuyền từ vị trí \(A\) đến vị trí \(M\) trên bờ biển với vận tốc \(6\left( {km/h} \right)\) rồi đi xe đạp từ \(M\) đến \(C\) với vận tốc \(10\left( … [Đọc thêm...] về

Một ngọn hải đăng đặt tại vị trí \(A\) cách bờ biển một khoảng \(AB = 4\left( {km} \right)\). Trên bờ biển có một cái kho ở vị trí \(C\) cách \(B\) một khoảng \(BC = 7\left( {km} \right)\). Người canh hải đăng phải chèo thuyền từ vị trí \(A\) đến vị trí \(M\) trên bờ biển với vận tốc \(6\left( {km/h} \right)\) rồi đi xe đạp từ \(M\) đến \(C\) với vận tốc \(10\left( {km/h} \right)\) (hình vẽ bên). Xác định khoảng cách từ \(M\) đến \(C\) để người đó đi từ \(A\) đến \(C\) là nhanh nhất.

.

Cho \(x\),\(y\),\(z\) là ba số thực thỏa mãn \(1 \le x \le y \le z \le 2\). Giá trị nhỏ nhất của biểu thức sau: \(H = \frac{{x + 3y}}{{{z^2} + 3\left( {x + y + 1} \right)}} + \frac{{y + 3z}}{{{x^2} + 3\left( {y + z + 1} \right)}} + \frac{{z + 3x}}{{{y^2} + 3\left( {z + x + 1} \right)}} + \frac{1}{{4\left( {x + y + z – 1} \right)}}\)

Ngày 06/10/2021 Thuộc chủ đề:Trắc nghiệm Giá trị lớn nhất và nhỏ nhất của hàm số Tag với:Trắc nghiệm GTLN GTNN vận dụng

Câu hỏi: Cho \(x\),\(y\),\(z\) là ba số thực thỏa mãn \(1 \le x \le y \le z \le 2\). Giá trị nhỏ nhất của biểu thức sau: \(H = \frac{{x + 3y}}{{{z^2} + 3\left( {x + y + 1} \right)}} + \frac{{y + 3z}}{{{x^2} + 3\left( {y + z + 1} \right)}} + \frac{{z + 3x}}{{{y^2} + 3\left( {z + x + 1} \right)}} + \frac{1}{{4\left( {x + y + z - 1} \right)}}\) A. \(\frac{{53}}{{40}}\). B. … [Đọc thêm...] về

Cho \(x\),\(y\),\(z\) là ba số thực thỏa mãn \(1 \le x \le y \le z \le 2\). Giá trị nhỏ nhất của biểu thức sau: \(H = \frac{{x + 3y}}{{{z^2} + 3\left( {x + y + 1} \right)}} + \frac{{y + 3z}}{{{x^2} + 3\left( {y + z + 1} \right)}} + \frac{{z + 3x}}{{{y^2} + 3\left( {z + x + 1} \right)}} + \frac{1}{{4\left( {x + y + z – 1} \right)}}\)

Gọi \(M,m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right) = \frac{{{x^2} – 8x}}{{x + 1}}\) trên đoạn \(\left[ {1\,;3} \right]\). Khi đó \(M – m\) bằng

Ngày 06/10/2021 Thuộc chủ đề:Trắc nghiệm Giá trị lớn nhất và nhỏ nhất của hàm số Tag với:Trắc nghiệm GTLN GTNN vận dụng

Câu hỏi: Gọi \(M,m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right) = \frac{{{x^2} - 8x}}{{x + 1}}\) trên đoạn \(\left[ {1\,;3} \right]\). Khi đó \(M - m\) bằng A. \( - 3\). B. \(\frac{1}{2}\). C. \(\frac{{26}}{5}\). D. \(\frac{{24}}{5}\). Lời giải Chọn B Xét hàm số \(f\left( x \right) = \frac{{{x^2} - 8x}}{{x + 1}}\) trên … [Đọc thêm...] về

Gọi \(M,m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right) = \frac{{{x^2} – 8x}}{{x + 1}}\) trên đoạn \(\left[ {1\,;3} \right]\). Khi đó \(M – m\) bằng

Gọi \(M\), \(m\) lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y = \left| { – {x^3} + 3{x^2} – 3} \right|\) trên đoạn \(\left[ {1\,;\,3} \right]\). Khi đó \(M + m\) nằm trong khoảng nào?

Ngày 06/10/2021 Thuộc chủ đề:Trắc nghiệm Giá trị lớn nhất và nhỏ nhất của hàm số Tag với:Trắc nghiệm GTLN GTNN vận dụng

Câu hỏi: Gọi \(M\), \(m\) lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y = \left| { - {x^3} + 3{x^2} - 3} \right|\) trên đoạn \(\left[ {1\,;\,3} \right]\). Khi đó \(M + m\) nằm trong khoảng nào? A. \(\left( {2\,;\,4} \right)\). B. \(\left( {0\,;\,1} \right)\). C. \(\left( {1\,;\,2} \right)\). D. \(\left( {3\,;\,5} \right)\). Lời giải Chọn … [Đọc thêm...] về

Gọi \(M\), \(m\) lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y = \left| { – {x^3} + 3{x^2} – 3} \right|\) trên đoạn \(\left[ {1\,;\,3} \right]\). Khi đó \(M + m\) nằm trong khoảng nào?

Cho hai số thực \(a\), \(b\) đều lớn hơn \(1\). Giá trị nhỏ nhất của biểu thức \(S = \frac{1}{{{{\log }_{ab}}a}} + \frac{1}{{{{\log }_{\sqrt[4]{{ab}}}}b}}\) bằng

Ngày 06/10/2021 Thuộc chủ đề:Trắc nghiệm Giá trị lớn nhất và nhỏ nhất của hàm số Tag với:Trắc nghiệm GTLN GTNN vận dụng

Câu hỏi: Cho hai số thực \(a\), \(b\) đều lớn hơn \(1\). Giá trị nhỏ nhất của biểu thức \(S = \frac{1}{{{{\log }_{ab}}a}} + \frac{1}{{{{\log }_{\sqrt[4]{{ab}}}}b}}\) bằng A. \(\frac{4}{9}\). B. \(\frac{9}{4}\). C. \(\frac{9}{2}\). D. \(\frac{1}{4}\). Lời giải Chọn B Ta có \(S = \frac{1}{{{{\log }_{ab}}a}} + \frac{1}{{{{\log }_{\sqrt[4]{{ab}}}}b}}\)\( = … [Đọc thêm...] về

Cho hai số thực \(a\), \(b\) đều lớn hơn \(1\). Giá trị nhỏ nhất của biểu thức \(S = \frac{1}{{{{\log }_{ab}}a}} + \frac{1}{{{{\log }_{\sqrt[4]{{ab}}}}b}}\) bằng

Cho hàm số \(y = \frac{{\sin x + {m^2}}}{{\sin x – 2}}\). Giá trị của \(m\) thuộc khoảng nào sau đây thì hàm số đạt giá trị lớn nhất là \( – 1\).

Ngày 06/10/2021 Thuộc chủ đề:Trắc nghiệm Giá trị lớn nhất và nhỏ nhất của hàm số Tag với:Trắc nghiệm GTLN GTNN vận dụng

Câu hỏi: Cho hàm số \(y = \frac{{\sin x + {m^2}}}{{\sin x - 2}}\). Giá trị của \(m\) thuộc khoảng nào sau đây thì hàm số đạt giá trị lớn nhất là \( - 1\). A. \(\left( { - 1;0} \right)\). B. \(\left( { - 4;3} \right)\). C. \(\left( {4;6} \right)\). D. \(\left( {0;1} \right)\). Lời giải Chọn B Đặt \(t = \sin x,\,\left( {t \in \left[ { - 1;1} \right]} … [Đọc thêm...] về

Cho hàm số \(y = \frac{{\sin x + {m^2}}}{{\sin x – 2}}\). Giá trị của \(m\) thuộc khoảng nào sau đây thì hàm số đạt giá trị lớn nhất là \( – 1\).

Gọi \(M,m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = \frac{{2\sin x + 3}}{{\sin x + 1}}\) trên đoạn \(\left[ {0\,;\,\frac{\pi }{2}} \right]\). Khi đó \({M^2} + {m^2}\) là

Ngày 06/10/2021 Thuộc chủ đề:Trắc nghiệm Giá trị lớn nhất và nhỏ nhất của hàm số Tag với:Trắc nghiệm GTLN GTNN vận dụng

Câu hỏi: Gọi \(M,m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = \frac{{2\sin x + 3}}{{\sin x + 1}}\) trên đoạn \(\left[ {0\,;\,\frac{\pi }{2}} \right]\). Khi đó \({M^2} + {m^2}\) là A. \(\frac{{11}}{2}\). B. \(\frac{{31}}{2}\). C. \(15\). D. \(\frac{{61}}{4}\). Lời giải Chọn D Đặt \(t = \sin x\). Với \(x \in \left[ {0\,;\,\frac{\pi … [Đọc thêm...] về

Gọi \(M,m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = \frac{{2\sin x + 3}}{{\sin x + 1}}\) trên đoạn \(\left[ {0\,;\,\frac{\pi }{2}} \right]\). Khi đó \({M^2} + {m^2}\) là

Cho các số thực dương \(x,y\) thỏa mãn\({\log _{\frac{1}{2}}}x\, + \,{\log _{\frac{1}{2}}}y\,\, \le \,\,{\log _{\frac{1}{2}}}\left( {x + {y^2}} \right)\). Giá trị nhỏ nhất của biểu thức \(P = x + 3y\) là

Ngày 06/10/2021 Thuộc chủ đề:Trắc nghiệm Giá trị lớn nhất và nhỏ nhất của hàm số Tag với:Trắc nghiệm GTLN GTNN vận dụng

Câu hỏi: Cho các số thực dương \(x,y\) thỏa mãn\({\log _{\frac{1}{2}}}x\, + \,{\log _{\frac{1}{2}}}y\,\, \le \,\,{\log _{\frac{1}{2}}}\left( {x + {y^2}} \right)\). Giá trị nhỏ nhất của biểu thức \(P = x + 3y\) là A. 9. B. 8. C. \(\frac{{25\sqrt 2 }}{4}\). D. \(\frac{{17}}{2}\). Lời giải Chọn A Ta có: \({\log _{\frac{1}{2}}}x\, + \,{\log … [Đọc thêm...] về

Cho các số thực dương \(x,y\) thỏa mãn\({\log _{\frac{1}{2}}}x\, + \,{\log _{\frac{1}{2}}}y\,\, \le \,\,{\log _{\frac{1}{2}}}\left( {x + {y^2}} \right)\). Giá trị nhỏ nhất của biểu thức \(P = x + 3y\) là

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 36
  • Trang 37
  • Trang 38
  • Trang 39
  • Trang 40
  • Interim pages omitted …
  • Trang 57
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.