• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

VDC Toan 2022

(Sở Phú Thọ 2022) Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}3{x^2}\ln \left( {x + 1} \right) & {\rm{khi}}\,\,x \ge 0\\2x\sqrt {{x^2} + 3} + 1 & {\rm{khi}}\,\,x < 0\end{array} \right.\). Biết \(\int\limits_{\frac{1}{e}}^e {\frac{{f\left( {\ln x} \right)}}{x}{\rm{d}}x} = a\sqrt 3 + b\ln 2 + c\) với \(a,b,c \in \mathbb{Q}\). Giá trị của \(a + b + 6c\) bằng

Ngày 13/06/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:tich phan nang cao, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, VDC Toan 2022

Câu hỏi: (Sở Phú Thọ 2022) Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}3{x^2}\ln \left( {x + 1} \right) & {\rm{khi}}\,\,x \ge 0\\2x\sqrt {{x^2} + 3} + 1 & {\rm{khi}}\,\,x < 0\end{array} \right.\). Biết \(\int\limits_{\frac{1}{e}}^e {\frac{{f\left( {\ln x} \right)}}{x}{\rm{d}}x} = a\sqrt 3 + b\ln 2 + c\) với \(a,b,c \in \mathbb{Q}\). Giá trị của \(a … [Đọc thêm...] về

(Sở Phú Thọ 2022) Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}3{x^2}\ln \left( {x + 1} \right) & {\rm{khi}}\,\,x \ge 0\\2x\sqrt {{x^2} + 3} + 1 & {\rm{khi}}\,\,x < 0\end{array} \right.\). Biết \(\int\limits_{\frac{1}{e}}^e {\frac{{f\left( {\ln x} \right)}}{x}{\rm{d}}x} = a\sqrt 3 + b\ln 2 + c\) với \(a,b,c \in \mathbb{Q}\). Giá trị của \(a + b + 6c\) bằng

(Đại học Hồng Đức – 2022) Tổng \(S\) của tất cả các nghiệm thuộc khoảng \((0;4\pi )\) của phương trình \({2022^{{{\sin }^2}x}} – {2022^{{{\cos }^2}x}} = 2\ln (\cot x\)) là

Ngày 13/06/2022 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:Trắc nghiệm HS mũ VDC 2022, Trắc nghiệm Logarit VDC 2022, VDC Toan 2022

Câu hỏi: (Đại học Hồng Đức – 2022) Tổng \(S\) của tất cả các nghiệm thuộc khoảng \((0;4\pi )\) của phương trình \({2022^{{{\sin }^2}x}} - {2022^{{{\cos }^2}x}} = 2\ln (\cot x\)) là A. \(S = 18\pi \). B. \(S = 8\pi \). C. \(S = 7\pi \). D. \(S = 16\pi \). Lời giải:. Điều kiện \(\cot x > 0\). Ta có \(\begin{array}{l}{2022^{{{\sin }^2}x}} - … [Đọc thêm...] về(Đại học Hồng Đức – 2022) Tổng \(S\) của tất cả các nghiệm thuộc khoảng \((0;4\pi )\) của phương trình \({2022^{{{\sin }^2}x}} – {2022^{{{\cos }^2}x}} = 2\ln (\cot x\)) là

(Sở Hà Tĩnh 2022) Cho hàm số \(y = f(x)\) có đạo hàm \(f\prime (x)\) liên tục trên \(\mathbb{R}\). Miền hình phẳng trong hình vẽ được giới hạn bơi đồ thị hàm số \(y = f\prime (x)\) và trục hoành đồng thời có diện tích \(S = a\). Biết rằng\(\int_0^1 {(x + 1)} f\prime (x)dx = b\)

Ngày 13/06/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:tich phan nang cao, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, VDC Toan 2022

Câu hỏi: (Sở Hà Tĩnh 2022) Cho hàm số \(y = f(x)\) có đạo hàm \(f\prime (x)\) liên tục trên \(\mathbb{R}\). Miền hình phẳng trong hình vẽ được giới hạn bơi đồ thị hàm số \(y = f\prime (x)\) và trục hoành đồng thời có diện tích \(S = a\). Biết rằng\(\int_0^1 {(x + 1)} f\prime (x)dx = b\) A. \(I = a - b + C.\) B. \(I = - a + b - c\). C. \( - a + b + … [Đọc thêm...] về

(Sở Hà Tĩnh 2022) Cho hàm số \(y = f(x)\) có đạo hàm \(f\prime (x)\) liên tục trên \(\mathbb{R}\). Miền hình phẳng trong hình vẽ được giới hạn bơi đồ thị hàm số \(y = f\prime (x)\) và trục hoành đồng thời có diện tích \(S = a\). Biết rằng\(\int_0^1 {(x + 1)} f\prime (x)dx = b\)

(Chuyên Lam Sơn 2022) Cho \(a,b\) là các số thực thay đổi thỏa mãn \({\log _{{a^2} + {b^2} + 20}}(6a – 8b – 4) = 1\) và \(c,d\) là các số thực dương thay đổi thỏa mãn \(\sqrt {{c^2} + c + {{\log }_2}\frac{c}{d} – 7} = \sqrt {2\left( {2{d^2} + d – 3} \right)} \). Giá trị nhỏ nhất của biểu thức \(\sqrt {{{(a – c + 1)}^2} + {{(b – d)}^2}} \) là

Ngày 13/06/2022 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:Trắc nghiệm HS mũ VDC 2022, Trắc nghiệm Logarit VDC 2022, VDC Toan 2022

Câu hỏi: (Chuyên Lam Sơn 2022) Cho \(a,b\) là các số thực thay đổi thỏa mãn \({\log _{{a^2} + {b^2} + 20}}(6a - 8b - 4) = 1\) và \(c,d\) là các số thực dương thay đổi thỏa mãn \(\sqrt {{c^2} + c + {{\log }_2}\frac{c}{d} - 7} = \sqrt {2\left( {2{d^2} + d - 3} \right)} \). Giá trị nhỏ nhất của biểu thức \(\sqrt {{{(a - c + 1)}^2} + {{(b - d)}^2}} \) là A. \(4\sqrt 2 - … [Đọc thêm...] về

(Chuyên Lam Sơn 2022) Cho \(a,b\) là các số thực thay đổi thỏa mãn \({\log _{{a^2} + {b^2} + 20}}(6a – 8b – 4) = 1\) và \(c,d\) là các số thực dương thay đổi thỏa mãn \(\sqrt {{c^2} + c + {{\log }_2}\frac{c}{d} – 7} = \sqrt {2\left( {2{d^2} + d – 3} \right)} \). Giá trị nhỏ nhất của biểu thức \(\sqrt {{{(a – c + 1)}^2} + {{(b – d)}^2}} \) là

(THPT Nho Quan A – Ninh Bình – 2022) Cho hàm số \(y = f(x) = a{x^4} + b{x^2} + c\) có đồ thị \((C)\), Biết \(f( – 1) = 0\). Tiếp tuyến \(d\) tại điểm có hoành độ \(x = – 1\) của \((C)\) cắt \((C)\) tại 2 điểm có hoành độ lần lượt là 0 và 2, Gọi \({S_1};{S_2}\) là diện tích hình phẳng (phần gạch chéo trong hình vẽ). Tính \({S_2}\), biết \({S_1} = \frac{{401}}{{2022}}\).

Ngày 13/06/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:tich phan nang cao, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, VDC Toan 2022

Câu hỏi: (THPT Nho Quan A – Ninh Bình – 2022) Cho hàm số \(y = f(x) = a{x^4} + b{x^2} + c\) có đồ thị \((C)\), Biết \(f( - 1) = 0\). Tiếp tuyến \(d\) tại điểm có hoành độ \(x = - 1\) của \((C)\) cắt \((C)\) tại 2 điểm có hoành độ lần lượt là 0 và 2, Gọi \({S_1};{S_2}\) là diện tích hình phẳng (phần gạch chéo trong hình vẽ). Tính \({S_2}\), biết \({S_1} = … [Đọc thêm...] về

(THPT Nho Quan A – Ninh Bình – 2022) Cho hàm số \(y = f(x) = a{x^4} + b{x^2} + c\) có đồ thị \((C)\), Biết \(f( – 1) = 0\). Tiếp tuyến \(d\) tại điểm có hoành độ \(x = – 1\) của \((C)\) cắt \((C)\) tại 2 điểm có hoành độ lần lượt là 0 và 2, Gọi \({S_1};{S_2}\) là diện tích hình phẳng (phần gạch chéo trong hình vẽ). Tính \({S_2}\), biết \({S_1} = \frac{{401}}{{2022}}\).

(THPT Lương Tài 2 – Bắc Ninh – 2022) Cho hàm số\(f(x) = \left\{ {\begin{array}{*{20}{c}}{2x + a}&{khi}&{x \ge 1}\\{3{x^2} + b}&{khi}&{x < 1}\end{array}} \right.\) thoả mãn \(\int\limits_0^2 {f(x)} \,dx = 13\). Tính \(T = a + b – ab\)?

Ngày 13/06/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:tich phan nang cao, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, VDC Toan 2022

Câu hỏi: (THPT Lương Tài 2 - Bắc Ninh - 2022) Cho hàm số\(f(x) = \left\{ {\begin{array}{*{20}{c}}{2x + a}&{khi}&{x \ge 1}\\{3{x^2} + b}&{khi}&{x < 1}\end{array}} \right.\) thoả mãn \(\int\limits_0^2 {f(x)} \,dx = 13\). Tính \(T = a + b - ab\)? A. \(T = - 11\). B. \(T = - 5\). C. \(T = 1\). D. \(T = - 1\). Lời giải: Chọn A Nhận … [Đọc thêm...] về

(THPT Lương Tài 2 – Bắc Ninh – 2022) Cho hàm số\(f(x) = \left\{ {\begin{array}{*{20}{c}}{2x + a}&{khi}&{x \ge 1}\\{3{x^2} + b}&{khi}&{x < 1}\end{array}} \right.\) thoả mãn \(\int\limits_0^2 {f(x)} \,dx = 13\). Tính \(T = a + b – ab\)?

(Chuyên Hạ Long 2022) Cho \(0 < m \ne 1\). Gọi \((a;b)\) là tập hợp các giá trị của \(m\) để bất phương trình \({\log _m}\left( {1 – 8{m^{ – x}}} \right) \ge 2(1 – x)\) có hữu hạn nghiệm nguyên. Tính \(b – a\)

Ngày 13/06/2022 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:Trắc nghiệm HS mũ VDC 2022, Trắc nghiệm Logarit VDC 2022, VDC Toan 2022

Câu hỏi: (Chuyên Hạ Long 2022) Cho \(0 < m \ne 1\). Gọi \((a;b)\) là tập hợp các giá trị của \(m\) để bất phương trình \({\log _m}\left( {1 - 8{m^{ - x}}} \right) \ge 2(1 - x)\) có hữu hạn nghiệm nguyên. Tính \(b - a\) A. 1. B. \(3\sqrt 2 - 1\). C. \(2\sqrt 2 - 1\). D. \(4\sqrt 2 - 1\). Lời giải: Trường hợp 1: \(m > 1\) Ta có: \({\log … [Đọc thêm...] về

(Chuyên Hạ Long 2022) Cho \(0 < m \ne 1\). Gọi \((a;b)\) là tập hợp các giá trị của \(m\) để bất phương trình \({\log _m}\left( {1 – 8{m^{ – x}}} \right) \ge 2(1 – x)\) có hữu hạn nghiệm nguyên. Tính \(b – a\)

(Sở Bắc Giang 2022) Có bao nhiêu số nguyên \(x\) sao cho tồn tại số thực \(y\) thỏa mãn \(2{\log _3}(x + y + 1) = {\log _2}\left( {{x^2} + 2x + 2{y^2} + 1} \right)\) ?

Ngày 13/06/2022 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:Trắc nghiệm HS mũ VDC 2022, Trắc nghiệm Logarit VDC 2022, VDC Toan 2022

Câu hỏi: (Sở Bắc Giang 2022) Có bao nhiêu số nguyên \(x\) sao cho tồn tại số thực \(y\) thỏa mãn \(2{\log _3}(x + y + 1) = {\log _2}\left( {{x^2} + 2x + 2{y^2} + 1} \right)\) ? A. 4. B.2. C. 3. D. 1. Lời giải: Đặt \(X = x + 1\). Khi đó, ta có \(2{\log _3}(X + y) = {\log _2}\left( {{X^2} + 2{y^2}} \right) \Leftrightarrow {\log _3}(X + y) = {\log … [Đọc thêm...] về

(Sở Bắc Giang 2022) Có bao nhiêu số nguyên \(x\) sao cho tồn tại số thực \(y\) thỏa mãn \(2{\log _3}(x + y + 1) = {\log _2}\left( {{x^2} + 2x + 2{y^2} + 1} \right)\) ?

(THPT Phù Cừ – Hưng Yên – 2022) Cho các số thực \(x,y\) thỏa mãn \(\frac{{{2^{{x^2} + {y^2} – 1}}}}{{{x^2} + {y^2} – 2x + 2}} \le {4^{x – 1}}\) và \(2x – y \ge 0\). Giả trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P = 3x + 2y + 1\) lần lượt là \(M\) và \(m\). Tính \(M + m\).

Ngày 13/06/2022 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:Trắc nghiệm HS mũ VDC 2022, Trắc nghiệm Logarit VDC 2022, VDC Toan 2022

Câu hỏi: (THPT Phù Cừ - Hưng Yên - 2022) Cho các số thực \(x,y\) thỏa mãn \(\frac{{{2^{{x^2} + {y^2} - 1}}}}{{{x^2} + {y^2} - 2x + 2}} \le {4^{x - 1}}\) và \(2x - y \ge 0\). Giả trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P = 3x + 2y + 1\) lần lượt là \(M\) và \(m\). Tính \(M + m\). A. 6. B. 10. C. 12. D. 8. Lời giải: Ta có \(\frac{{{2^{{x^2} + … [Đọc thêm...] về

(THPT Phù Cừ – Hưng Yên – 2022) Cho các số thực \(x,y\) thỏa mãn \(\frac{{{2^{{x^2} + {y^2} – 1}}}}{{{x^2} + {y^2} – 2x + 2}} \le {4^{x – 1}}\) và \(2x – y \ge 0\). Giả trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P = 3x + 2y + 1\) lần lượt là \(M\) và \(m\). Tính \(M + m\).

(Chuyên Nguyễn Trãi – Hải Dương – 2022) Gọi \(S\) là tập các giá trị của tham số \(m\) để bất phương trình \({\log _{0.3}}\left[ {{x^2} + 2(m – 3)x + 4} \right] \ge {\log _{0.3}}\left( {3{x^2} + 2x + m} \right)\) thỏa mãn với mọi \(x\) thuộc \(\mathbb{R}\). Tập \(S\) bằng

Ngày 13/06/2022 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:Trắc nghiệm HS mũ VDC 2022, Trắc nghiệm Logarit VDC 2022, VDC Toan 2022

Câu hỏi: (Chuyên Nguyễn Trãi – Hải Dương – 2022) Gọi \(S\) là tập các giá trị của tham số \(m\) để bất phương trình \({\log _{0.3}}\left[ {{x^2} + 2(m - 3)x + 4} \right] \ge {\log _{0.3}}\left( {3{x^2} + 2x + m} \right)\) thỏa mãn với mọi \(x\) thuộc \(\mathbb{R}\). Tập \(S\) bằng A. \(S = [5;6)\). B. \(S = [4;6]\). C. \(S = [4;5)\). D. \(S = [1;5)\). Lời … [Đọc thêm...] về

(Chuyên Nguyễn Trãi – Hải Dương – 2022) Gọi \(S\) là tập các giá trị của tham số \(m\) để bất phương trình \({\log _{0.3}}\left[ {{x^2} + 2(m – 3)x + 4} \right] \ge {\log _{0.3}}\left( {3{x^2} + 2x + m} \right)\) thỏa mãn với mọi \(x\) thuộc \(\mathbb{R}\). Tập \(S\) bằng

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 10
  • Trang 11
  • Trang 12
  • Trang 13
  • Trang 14
  • Interim pages omitted …
  • Trang 29
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.