• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Ung dung tich phan

Cho hàm số \(y = f\left( x \right)\) đồng biến và có đạo hàm liên tục trên \(\mathbb{R}\) thỏa mãn \({\left( {f’\left( x \right)} \right)^2} = f\left( x \right).{e^x},\forall x \in \mathbb{R}\) và \(f\left( 0 \right) = 2.\) Khi đó \(f\left( 4 \right)\) thuộc khoảng nào sau đây?

Ngày 22/05/2023 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Dien tich hinh phang, Ung dung tich phan, Ung dung tich phan 2024

Cho hàm số \(y = f\left( x \right)\) đồng biến và có đạo hàm liên tục trên \(\mathbb{R}\) thỏa mãn \({\left( {f'\left( x \right)} \right)^2} = f\left( x \right).{e^x},\forall x \in \mathbb{R}\) và \(f\left( 0 \right) = 2.\) Khi đó \(f\left( 4 \right)\) thuộc khoảng nào sau đây? A. \(\left( {60;62} \right)\). B. \(\left( {55;58} \right)\). C. \(\left( {7;8} … [Đọc thêm...] vềCho hàm số \(y = f\left( x \right)\) đồng biến và có đạo hàm liên tục trên \(\mathbb{R}\) thỏa mãn \({\left( {f’\left( x \right)} \right)^2} = f\left( x \right).{e^x},\forall x \in \mathbb{R}\) và \(f\left( 0 \right) = 2.\) Khi đó \(f\left( 4 \right)\) thuộc khoảng nào sau đây?

Diện tích phần hình phẳng giới hạn bởi đồ thị hai hàm số \(y = {x^3} – 3{x^2} + 2\); \(y = – {x^2} + x\) và hai đường thẳng \(x = – 1\); \(x = 2\) (phần tô màu) bằng

Ngày 20/05/2023 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Ung dung tich phan

Diện tích phần hình phẳng giới hạn bởi đồ thị hai hàm số \(y = {x^3} - 3{x^2} + 2\); \(y = - {x^2} + x\) và hai đường thẳng \(x = - 1\); \(x = 2\) (phần tô màu) bằng A. \(\frac{8}{3}\). B. \(\frac{5}{{12}}\). C. \(\frac{{37}}{{12}}\). D. \(\frac{9}{4}\). Lời giải: Diện tích hình phẳng cần tìm là \(S = \int\limits_{ - 1}^2 {\left| {\left( {{x^3} - 3{x^2} … [Đọc thêm...] vềDiện tích phần hình phẳng giới hạn bởi đồ thị hai hàm số \(y = {x^3} – 3{x^2} + 2\); \(y = – {x^2} + x\) và hai đường thẳng \(x = – 1\); \(x = 2\) (phần tô màu) bằng

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) có đồ thị \(\left( C \right)\) cắt trục \(Ox\) tại \(3\) điểm có hoành độ lần lượt là \(a,b,c\left( {a < b < c} \right)\). Biết phần hình phẳng nằm phía trên trục \(Ox\) giới hạn bởi đồ thị \(\left( C \right)\) và trục \(Ox\) có diện tích là \({S_1} = 2\), phần hình phẳng nằm phía dưới trục \(Ox\) giới hạn bởi đồ thị \(\left( C \right)\) và trục \(Ox\) có diện tích là \({S_2} = 6\) (như hình vẽ). Tính \(I = \int\limits_a^c {f(x)d{\rm{x}}} \).

Ngày 20/05/2023 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Ung dung tich phan

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) có đồ thị \(\left( C \right)\) cắt trục \(Ox\) tại \(3\) điểm có hoành độ lần lượt là \(a,b,c\left( {a < b < c} \right)\). Biết phần hình phẳng nằm phía trên trục \(Ox\) giới hạn bởi đồ thị \(\left( C \right)\) và trục \(Ox\) có diện tích là \({S_1} = 2\), phần hình phẳng nằm phía dưới trục \(Ox\) giới hạn … [Đọc thêm...] vềCho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) có đồ thị \(\left( C \right)\) cắt trục \(Ox\) tại \(3\) điểm có hoành độ lần lượt là \(a,b,c\left( {a < b < c} \right)\). Biết phần hình phẳng nằm phía trên trục \(Ox\) giới hạn bởi đồ thị \(\left( C \right)\) và trục \(Ox\) có diện tích là \({S_1} = 2\), phần hình phẳng nằm phía dưới trục \(Ox\) giới hạn bởi đồ thị \(\left( C \right)\) và trục \(Ox\) có diện tích là \({S_2} = 6\) (như hình vẽ). Tính \(I = \int\limits_a^c {f(x)d{\rm{x}}} \).

Cho \(y = f\left( x \right)\) là hàm số chẵn, liên tục trên \(\mathbb{R}\) biết đồ thị hàm số \(y = f\left( x \right)\) đi qua điểm \(M\left( { – \frac{1}{2};\,4} \right)\) và \(\int\limits_0^{\frac{1}{2}} {f\left( t \right)\,{\rm{d}}t = 3} \). Tính \(I = \int\limits_{ – \frac{\pi }{6}}^0 {\sin 2x.f’\left( {\sin x} \right)\,{\rm{d}}x} \).

Ngày 20/05/2023 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Ung dung tich phan, VDC Toan 2023

Cho \(y = f\left( x \right)\) là hàm số chẵn, liên tục trên \(\mathbb{R}\) biết đồ thị hàm số \(y = f\left( x \right)\) đi qua điểm \(M\left( { - \frac{1}{2};\,4} \right)\) và \(\int\limits_0^{\frac{1}{2}} {f\left( t \right)\,{\rm{d}}t = 3} \). Tính \(I = \int\limits_{ - \frac{\pi }{6}}^0 {\sin 2x.f'\left( {\sin x} \right)\,{\rm{d}}x} \). A. \(I = 10\). B. \(I = - … [Đọc thêm...] vềCho \(y = f\left( x \right)\) là hàm số chẵn, liên tục trên \(\mathbb{R}\) biết đồ thị hàm số \(y = f\left( x \right)\) đi qua điểm \(M\left( { – \frac{1}{2};\,4} \right)\) và \(\int\limits_0^{\frac{1}{2}} {f\left( t \right)\,{\rm{d}}t = 3} \). Tính \(I = \int\limits_{ – \frac{\pi }{6}}^0 {\sin 2x.f’\left( {\sin x} \right)\,{\rm{d}}x} \).

Biết diện tích hình phẳng giới hạn bởi đồ thị các hàm số \(y = {x^2}\ln x\) , \(x = 2\) và trục hoành là \(S = \frac{{a\ln b}}{c} – \frac{d}{{{c^2}}}\) với \(a,b,c,d \in {\mathbb{N}^*}\) và \(b\) là số nguyên tố. Tính \(a + b + c +d\)

Ngày 20/05/2023 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Ung dung tich phan, VDC Toan 2023

Biết diện tích hình phẳng giới hạn bởi đồ thị các hàm số \(y = {x^2}\ln x\) , \(x = 2\) và trục hoành là \(S = \frac{{a\ln b}}{c} - \frac{d}{{{c^2}}}\) với \(a,b,c,d \in {\mathbb{N}^*}\) và \(b\) là số nguyên tố. Tính \(a + b + c +d\) A. \(13\). B. \(10\). C. \(20\). D. \(18\). Lời giải: Phương trình hoành độ giao điểm của hai đồ thị hàm số trên … [Đọc thêm...] vềBiết diện tích hình phẳng giới hạn bởi đồ thị các hàm số \(y = {x^2}\ln x\) , \(x = 2\) và trục hoành là \(S = \frac{{a\ln b}}{c} – \frac{d}{{{c^2}}}\) với \(a,b,c,d \in {\mathbb{N}^*}\) và \(b\) là số nguyên tố. Tính \(a + b + c +d\)

Cho hình \((H)\) giới hạn bởi đồ thị hàm số \(y = \frac{{\sqrt 3 }}{9}{x^3}\), cung tròn có phương trình \(y = \sqrt {4 – {x^2}} \) (với \(0 \le x \le 2)\)và trục hoành (phần tô đậm trong hình vẽ)

Biết thể tích của khối tròn xoay tạo thành khi quay \((H)\) quanh trục hoành là \(V = \left( { – \frac{a}{b}\sqrt 3 + \frac{c}{d}} \right)\pi \), trong đó \(a,b,c,d \in {\mathbb{N}^*}\) và \(\frac{a}{b},\frac{c}{d}\) là các phân số tối giản. Tính \(P = a + b – c + d\).

Ngày 20/05/2023 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Ung dung tich phan

Cho hình \((H)\) giới hạn bởi đồ thị hàm số \(y = \frac{{\sqrt 3 }}{9}{x^3}\), cung tròn có phương trình \(y = \sqrt {4 - {x^2}} \) (với \(0 \le x \le 2)\)và trục hoành (phần tô đậm trong hình vẽ) Biết thể tích của khối tròn xoay tạo thành khi quay \((H)\) quanh trục hoành là \(V = \left( { - \frac{a}{b}\sqrt 3 + \frac{c}{d}} \right)\pi \), trong đó \(a,b,c,d \in … [Đọc thêm...] vềCho hình \((H)\) giới hạn bởi đồ thị hàm số \(y = \frac{{\sqrt 3 }}{9}{x^3}\), cung tròn có phương trình \(y = \sqrt {4 – {x^2}} \) (với \(0 \le x \le 2)\)và trục hoành (phần tô đậm trong hình vẽ)

Biết thể tích của khối tròn xoay tạo thành khi quay \((H)\) quanh trục hoành là \(V = \left( { – \frac{a}{b}\sqrt 3 + \frac{c}{d}} \right)\pi \), trong đó \(a,b,c,d \in {\mathbb{N}^*}\) và \(\frac{a}{b},\frac{c}{d}\) là các phân số tối giản. Tính \(P = a + b – c + d\).

Cho phần vật thể giới hạn bởi hai mặt phẳng \(x = 1\) và \(x = 2\sqrt 2 \), biết rằng khi cắt vật thể bởi mặt phẳng vuông góc với trục \(Ox\) tại điểm có hoành độ \(x\) (\(1 \le x \le 2\sqrt 2 \)) thì được thiết diện là một hình chữ nhật có độ dài hai cạnh là \(x\) và \(\sqrt {{x^2} + 1} \). Thể tích của phần vật thể đã cho bằng

Ngày 20/05/2023 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Ung dung tich phan

Cho phần vật thể giới hạn bởi hai mặt phẳng \(x = 1\) và \(x = 2\sqrt 2 \), biết rằng khi cắt vật thể bởi mặt phẳng vuông góc với trục \(Ox\) tại điểm có hoành độ \(x\) (\(1 \le x \le 2\sqrt 2 \)) thì được thiết diện là một hình chữ nhật có độ dài hai cạnh là \(x\) và \(\sqrt {{x^2} + 1} \). Thể tích của phần vật thể đã cho bằng A. \(\left( {9 - \frac{{2\sqrt 2 }}{3}} … [Đọc thêm...] vềCho phần vật thể giới hạn bởi hai mặt phẳng \(x = 1\) và \(x = 2\sqrt 2 \), biết rằng khi cắt vật thể bởi mặt phẳng vuông góc với trục \(Ox\) tại điểm có hoành độ \(x\) (\(1 \le x \le 2\sqrt 2 \)) thì được thiết diện là một hình chữ nhật có độ dài hai cạnh là \(x\) và \(\sqrt {{x^2} + 1} \). Thể tích của phần vật thể đã cho bằng

Một chiếc cổng có hình dạng là một Parabol có khoảng cách giữa hai chân cổng là \(AB = 8\,\,{\rm{m}}{\rm{.}}\) Người ra treo một tâm phông hình chữ nhật có hai đỉnh \(M,\,\,N\)nằm trên Parabol và hai đỉnh \(P,\,\,Q\) nằm trên mặt đất (như hình vẽ). Ở phần phía ngoài phông (phần không tô đen) người ta mua hoa để trang trí với chi phí cho \(1\,\,{{\rm{m}}^2}\) cần số tiền mua hoa là \(200.000\) đồng, biết \(MN = 4\,\,{\rm{m}},\,\,MQ = 6\,\,{\rm{m}}{\rm{.}}\) Hỏi số tiền dùng để mua hoa trang trí chiếc cổng gần với số tiền nào sau đây?

Ngày 20/05/2023 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Ung dung tich phan, VDC Toan 2023

Một chiếc cổng có hình dạng là một Parabol có khoảng cách giữa hai chân cổng là \(AB = 8\,\,{\rm{m}}{\rm{.}}\) Người ra treo một tâm phông hình chữ nhật có hai đỉnh \(M,\,\,N\)nằm trên Parabol và hai đỉnh \(P,\,\,Q\) nằm trên mặt đất (như hình vẽ). Ở phần phía ngoài phông (phần không tô đen) người ta mua hoa để trang trí với chi phí cho \(1\,\,{{\rm{m}}^2}\) cần số tiền mua hoa … [Đọc thêm...] vềMột chiếc cổng có hình dạng là một Parabol có khoảng cách giữa hai chân cổng là \(AB = 8\,\,{\rm{m}}{\rm{.}}\) Người ra treo một tâm phông hình chữ nhật có hai đỉnh \(M,\,\,N\)nằm trên Parabol và hai đỉnh \(P,\,\,Q\) nằm trên mặt đất (như hình vẽ). Ở phần phía ngoài phông (phần không tô đen) người ta mua hoa để trang trí với chi phí cho \(1\,\,{{\rm{m}}^2}\) cần số tiền mua hoa là \(200.000\) đồng, biết \(MN = 4\,\,{\rm{m}},\,\,MQ = 6\,\,{\rm{m}}{\rm{.}}\) Hỏi số tiền dùng để mua hoa trang trí chiếc cổng gần với số tiền nào sau đây?

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f’\left( x \right)\) trên \(\mathbb{R}\) và đồ thị của hàm số \(f’\left( x \right)\) cắt trục hoành tại bốn điểm có hoành độ theo thứ tự từ trái sang phải trên trục hoành là \(a,0,\,b,\,c\) \(\left( {a < 0 < b < c} \right)\) như hình vẽ.

Khẳng định nào đúng trong các khẳng định sau?

Ngày 20/05/2023 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Ung dung tich phan, VDC Toan 2023

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right)\) trên \(\mathbb{R}\) và đồ thị của hàm số \(f'\left( x \right)\) cắt trục hoành tại bốn điểm có hoành độ theo thứ tự từ trái sang phải trên trục hoành là \(a,0,\,b,\,c\) \(\left( {a < 0 < b < c} \right)\) như hình vẽ. Khẳng định nào đúng trong các khẳng định sau? A.\(f\left( c \right) > … [Đọc thêm...] vềCho hàm số \(y = f\left( x \right)\) có đạo hàm \(f’\left( x \right)\) trên \(\mathbb{R}\) và đồ thị của hàm số \(f’\left( x \right)\) cắt trục hoành tại bốn điểm có hoành độ theo thứ tự từ trái sang phải trên trục hoành là \(a,0,\,b,\,c\) \(\left( {a < 0 < b < c} \right)\) như hình vẽ.

Khẳng định nào đúng trong các khẳng định sau?

Cho hàm số bậc ba \(f(x) = a{x^3} – \frac{1}{2}{x^2} + cx + d\) và parabol \(y = g\left( x \right)\) có đỉnh nằm trên trục tung. Biết đồ thị \(y = f\left( x \right)\) và \(y = g\left( x \right)\) cắt nhau tại ba điểm phân biệt A, B, C có hoành độ lần lượt là \( – 2;1;2\) và thỏa mãn \(AB = \frac{{3\sqrt 5 }}{2}\) (tham khảo hình vẽ). Tính diện tích hình phẳng giới hạn bởi hai đồ thị \(y = f\left( x \right)\) và \(y = g\left( x \right)\).

Ngày 20/05/2023 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Ung dung tich phan, VDC Toan 2023

Cho hàm số bậc ba \(f(x) = a{x^3} - \frac{1}{2}{x^2} + cx + d\) và parabol \(y = g\left( x \right)\) có đỉnh nằm trên trục tung. Biết đồ thị \(y = f\left( x \right)\) và \(y = g\left( x \right)\) cắt nhau tại ba điểm phân biệt A, B, C có hoành độ lần lượt là \( - 2;1;2\) và thỏa mãn \(AB = \frac{{3\sqrt 5 }}{2}\) (tham khảo hình vẽ). Tính diện tích hình phẳng giới hạn bởi hai … [Đọc thêm...] vềCho hàm số bậc ba \(f(x) = a{x^3} – \frac{1}{2}{x^2} + cx + d\) và parabol \(y = g\left( x \right)\) có đỉnh nằm trên trục tung. Biết đồ thị \(y = f\left( x \right)\) và \(y = g\left( x \right)\) cắt nhau tại ba điểm phân biệt A, B, C có hoành độ lần lượt là \( – 2;1;2\) và thỏa mãn \(AB = \frac{{3\sqrt 5 }}{2}\) (tham khảo hình vẽ). Tính diện tích hình phẳng giới hạn bởi hai đồ thị \(y = f\left( x \right)\) và \(y = g\left( x \right)\).

  • « Chuyển đến Trang trước
  • Trang 1
  • Trang 2
  • Trang 3
  • Trang 4
  • Trang 5
  • Trang 6
  • Interim pages omitted …
  • Trang 8
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.