• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

Diện tích phần hình phẳng giới hạn bởi đồ thị hai hàm số \(y = {x^3} – 3{x^2} + 2\); \(y = – {x^2} + x\) và hai đường thẳng \(x = – 1\); \(x = 2\) (phần tô màu) bằng

Đăng ngày: 20/05/2023 Biên tập: admin Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Ung dung tich phan

adsense
Diện tích phần hình phẳng giới hạn bởi đồ thị hai hàm số \(y = {x^3} – 3{x^2} + 2\); \(y = – {x^2} + x\) và hai đường thẳng \(x = – 1\); \(x = 2\) (phần tô màu) bằng

A. \(\frac{8}{3}\).

B. \(\frac{5}{{12}}\).

C. \(\frac{{37}}{{12}}\).

D. \(\frac{9}{4}\).

adsense

Lời giải:

Diện tích phần hình phẳng giới hạn bởi đồ thị hai hàm số (y = {x^3} - 3{x^2} + 2); (y = - {x^2} + x) và hai đường thẳng (x = - 1); (x = 2) (phần tô màu) bằng</p> 1

Diện tích hình phẳng cần tìm là

\(S = \int\limits_{ – 1}^2 {\left| {\left( {{x^3} – 3{x^2} + 2} \right) – \left( { – {x^2} + x} \right)} \right|{\rm{d}}x = \int\limits_{ – 1}^1 {\left( {{x^3} – 2{x^2} – x + 2} \right){\rm{d}}x – \int\limits_1^2 {\left( {{x^3} – 2{x^2} – x + 2} \right){\rm{d}}x} } } \)

\( = \left. {\left( {\frac{1}{4}{x^4} – \frac{2}{3}{x^3} – \frac{1}{2}{x^2} + 2x} \right)} \right|_{ – 1}^1 – \left. {\left( {\frac{1}{4}{x^4} – \frac{2}{3}{x^3} – \frac{1}{2}{x^2} + 2x} \right)} \right|_1^2 = \frac{{37}}{{12}}\).

=========== Đây là các câu ÔN THI TN THPT MÔN TOÁN 2023 – CHUYÊN ĐỀ NGUYÊN HAM – TICH PHÂN – ỨNG DỤNG.

Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Ung dung tich phan

Bài liên quan:

  1. Diện tích phần hình phẳng gạch chéo trong hình vẽ dưới đây được tính theo công thức nào?

  2. Cho hàm số \(y = f\left( x \right)\) có đạo hàm và liên tục trên đoạn \(\left[ {0;\,4} \right]\) thỏa mãn \(f\left( 2 \right) = 16\), \(\,\int\limits_0^2 {{{\left[ {f’\left( x \right)} \right]}^2}dx = \frac{{1814}}{{15}}} \) và \(\int\limits_0^4 {f\left( {\sqrt x } \right)dx} = \frac{1}{3}\). Tính diện tích hình phẳng giới hạn bởi các đường \(y = f(x),\,\,x = 1,\,\,x = 4\) và trục hoành.

  3. Thể tích \(V\)của khối tròn xoay do hình phẳng giới hạn bởi đồ thị hàm số \(y = \sqrt {{x^2} + 2} ,\) trục \(Ox\) và hai đường thẳng \(x = 0,\,x = 3\) quay quanh trục \(Ox\)bằng

  4. Cho hình phẳng \(D\) giới hạn bởi đường cong \(y = \sqrt {2 – \cos 3x} ,\) trục hoành và các đường thẳng \(x = 0,x = \frac{\pi }{2}\). Khối tròn xoay tạo thành khi \(D\) quay quanh trục hoành có thể tích \(V\) bằng bao nhiêu?

  5. Cho đường tròn tâm O có đường kính bằng \(4\) và Elip có phương trình: \(\left( E \right):\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{4} = 1\) . Diện tích \(S\) phần hình phẳng ở bên ngoài đường tròn và bên trong Elip gần với kết quả nào nhất trong \(4\) kết quả dưới đây?

  6. Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) có đồ thị \(\left( C \right)\) cắt trục \(Ox\) tại \(3\) điểm có hoành độ lần lượt là \(a,b,c\left( {a < b < c} \right)\). Biết phần hình phẳng nằm phía trên trục \(Ox\) giới hạn bởi đồ thị \(\left( C \right)\) và trục \(Ox\) có diện tích là \({S_1} = 2\), phần hình phẳng nằm phía dưới trục \(Ox\) giới hạn bởi đồ thị \(\left( C \right)\) và trục \(Ox\) có diện tích là \({S_2} = 6\) (như hình vẽ). Tính \(I = \int\limits_a^c {f(x)d{\rm{x}}} \).

  7. Cho \(y = f\left( x \right)\) là hàm số chẵn, liên tục trên \(\mathbb{R}\) biết đồ thị hàm số \(y = f\left( x \right)\) đi qua điểm \(M\left( { – \frac{1}{2};\,4} \right)\) và \(\int\limits_0^{\frac{1}{2}} {f\left( t \right)\,{\rm{d}}t = 3} \). Tính \(I = \int\limits_{ – \frac{\pi }{6}}^0 {\sin 2x.f’\left( {\sin x} \right)\,{\rm{d}}x} \).

  8. Biết diện tích hình phẳng giới hạn bởi đồ thị các hàm số \(y = {x^2}\ln x\) , \(x = 2\) và trục hoành là \(S = \frac{{a\ln b}}{c} – \frac{d}{{{c^2}}}\) với \(a,b,c,d \in {\mathbb{N}^*}\) và \(b\) là số nguyên tố. Tính \(a + b + c +d\)

  9. Cho hình \((H)\) giới hạn bởi đồ thị hàm số \(y = \frac{{\sqrt 3 }}{9}{x^3}\), cung tròn có phương trình \(y = \sqrt {4 – {x^2}} \) (với \(0 \le x \le 2)\)và trục hoành (phần tô đậm trong hình vẽ)

    Biết thể tích của khối tròn xoay tạo thành khi quay \((H)\) quanh trục hoành là \(V = \left( { – \frac{a}{b}\sqrt 3 + \frac{c}{d}} \right)\pi \), trong đó \(a,b,c,d \in {\mathbb{N}^*}\) và \(\frac{a}{b},\frac{c}{d}\) là các phân số tối giản. Tính \(P = a + b – c + d\).

  10. Cho phần vật thể giới hạn bởi hai mặt phẳng \(x = 1\) và \(x = 2\sqrt 2 \), biết rằng khi cắt vật thể bởi mặt phẳng vuông góc với trục \(Ox\) tại điểm có hoành độ \(x\) (\(1 \le x \le 2\sqrt 2 \)) thì được thiết diện là một hình chữ nhật có độ dài hai cạnh là \(x\) và \(\sqrt {{x^2} + 1} \). Thể tích của phần vật thể đã cho bằng

  11. Một chiếc cổng có hình dạng là một Parabol có khoảng cách giữa hai chân cổng là \(AB = 8\,\,{\rm{m}}{\rm{.}}\) Người ra treo một tâm phông hình chữ nhật có hai đỉnh \(M,\,\,N\)nằm trên Parabol và hai đỉnh \(P,\,\,Q\) nằm trên mặt đất (như hình vẽ). Ở phần phía ngoài phông (phần không tô đen) người ta mua hoa để trang trí với chi phí cho \(1\,\,{{\rm{m}}^2}\) cần số tiền mua hoa là \(200.000\) đồng, biết \(MN = 4\,\,{\rm{m}},\,\,MQ = 6\,\,{\rm{m}}{\rm{.}}\) Hỏi số tiền dùng để mua hoa trang trí chiếc cổng gần với số tiền nào sau đây?

  12. Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f’\left( x \right)\) trên \(\mathbb{R}\) và đồ thị của hàm số \(f’\left( x \right)\) cắt trục hoành tại bốn điểm có hoành độ theo thứ tự từ trái sang phải trên trục hoành là \(a,0,\,b,\,c\) \(\left( {a < 0 < b < c} \right)\) như hình vẽ.

    Khẳng định nào đúng trong các khẳng định sau?

  13. Cho hàm số bậc ba \(f(x) = a{x^3} – \frac{1}{2}{x^2} + cx + d\) và parabol \(y = g\left( x \right)\) có đỉnh nằm trên trục tung. Biết đồ thị \(y = f\left( x \right)\) và \(y = g\left( x \right)\) cắt nhau tại ba điểm phân biệt A, B, C có hoành độ lần lượt là \( – 2;1;2\) và thỏa mãn \(AB = \frac{{3\sqrt 5 }}{2}\) (tham khảo hình vẽ). Tính diện tích hình phẳng giới hạn bởi hai đồ thị \(y = f\left( x \right)\) và \(y = g\left( x \right)\).

  14. Cho tích phân \(I = \int\limits_0^\pi {\frac{{x\sin x}}{{{{\cos }^2}x – 16}}} dx = a\pi \ln \frac{b}{c},\,\left( {a,b,c \in \mathbb{Q},0 < b < c < 8} \right)\). Giá trị của biểu thức \(40a + 3b – {c^2}\)là

  15. Cho hàm số \(y = f\left( x \right)\) liên tục và có đạo hàm trên đoạn \(\left[ { – 5;8} \right]\), biết

    \(f\left( { – 2} \right) + f\left( 2 \right) = \frac{{70}}{3}\). Đồ thị của \(f’\left( x \right)\) như hình vẽ được xác định là Parabol và đường thẳng trên đoạn đó. .Giá trị \(\int\limits_{ – 5}^8 {f\left( x \right){\rm{d}}x} \) là

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2023) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.