• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

MU - LOGA VDC

Tìm các giá trị thực của tham số \(m\) để phương trình \(\log _2^2x – 5{\log _2}x + 2m – 6 = 0\) có hai nghiệm thực \({x_1};\,{x_2}\) thỏa mãn \(\left( {{x_1} + 2} \right)\left( {{x_2} + 2} \right) = 60\).

Ngày 11/06/2023 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit Tag với:HAM DAC TRUNG MU LOGA, MU - LOGA VDC, Phuong trinh logarit, VDC Toan 2023

Tìm các giá trị thực của tham số \(m\) để phương trình \(\log _2^2x - 5{\log _2}x + 2m - 6 = 0\) có hai nghiệm thực \({x_1};\,{x_2}\) thỏa mãn \(\left( {{x_1} + 2} \right)\left( {{x_2} + 2} \right) = 60\). A. \(m = 9\). B. \(m = 3\). C. không tồn tại. D. \(m = 6\). Lời giải: \(\log _2^2x - 5{\log _2}x + 2m - 6 = 0\;\left( 1 \right)\) Điều kiện: \(x > … [Đọc thêm...] vềTìm các giá trị thực của tham số \(m\) để phương trình \(\log _2^2x – 5{\log _2}x + 2m – 6 = 0\) có hai nghiệm thực \({x_1};\,{x_2}\) thỏa mãn \(\left( {{x_1} + 2} \right)\left( {{x_2} + 2} \right) = 60\).

Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ {1\,;\,2023} \right]\) để phương trình \(\left( {{4^{x + 1}} – 65 \cdot {2^x} + 16} \right) \cdot \sqrt {{{\log }_3}{x^2} – m} = 0\) có \(2\) nghiệm nguyên.

Ngày 11/06/2023 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit Tag với:HAM DAC TRUNG MU LOGA, MU - LOGA VDC, Phuong trinh logarit, VDC Toan 2023

Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ {1\,;\,2023} \right]\) để phương trình \(\left( {{4^{x + 1}} - 65 \cdot {2^x} + 16} \right) \cdot \sqrt {{{\log }_3}{x^2} - m} = 0\) có \(2\) nghiệm nguyên. A. \(1012\). B. \(1011\). C. \(1\). D. \(1010\). Lời giải: Đkxđ: \(\left\{ \begin{array}{l}{x^2} > 0\\{\log _3}{x^2} - m \ge 0\end{array} \right. … [Đọc thêm...] vềCó bao nhiêu giá trị nguyên của tham số \(m \in \left[ {1\,;\,2023} \right]\) để phương trình \(\left( {{4^{x + 1}} – 65 \cdot {2^x} + 16} \right) \cdot \sqrt {{{\log }_3}{x^2} – m} = 0\) có \(2\) nghiệm nguyên.

Tập hợp \(S\) các giá trị nguyên thuộc khoảng \(\left( { – 2023;\;2023} \right)\) của tham số thực \(m\) sao cho phương trình \({\log _2}\left( {x – \sqrt {{x^2} – 4} } \right).{\log _5}\left( {x – \sqrt {{x^2} – 4} } \right) = {\log _m}\left( {x + \sqrt {{x^2} – 4} } \right)\) có nghiệm \(x\) lớn hơn \(3\). Số phần tử của tập hợp \(S\) là

Ngày 11/06/2023 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit Tag với:HAM DAC TRUNG MU LOGA, MU - LOGA VDC, Phuong trinh logarit, VDC Toan 2023

Tập hợp \(S\) các giá trị nguyên thuộc khoảng \(\left( { - 2023;\;2023} \right)\) của tham số thực \(m\) sao cho phương trình \({\log _2}\left( {x - \sqrt {{x^2} - 4} } \right).{\log _5}\left( {x - \sqrt {{x^2} - 4} } \right) = {\log _m}\left( {x + \sqrt {{x^2} - 4} } \right)\) có nghiệm \(x\) lớn hơn \(3\). Số phần tử của tập hợp \(S\) là A. \(4044\). B. \(2023\). C. … [Đọc thêm...] vềTập hợp \(S\) các giá trị nguyên thuộc khoảng \(\left( { – 2023;\;2023} \right)\) của tham số thực \(m\) sao cho phương trình \({\log _2}\left( {x – \sqrt {{x^2} – 4} } \right).{\log _5}\left( {x – \sqrt {{x^2} – 4} } \right) = {\log _m}\left( {x + \sqrt {{x^2} – 4} } \right)\) có nghiệm \(x\) lớn hơn \(3\). Số phần tử của tập hợp \(S\) là

Có bao nhiêu số nguyên \(x\) sao cho ứng với mỗi \(x\) có không quá 728 số nguyên \(y\) thỏa mãn \({\log _4}\left( {{x^2} + y} \right) \ge {\log _3}\left( {x + y} \right)\)?

Ngày 11/06/2023 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit Tag với:MU - LOGA VDC, Phuong trinh logarit

Có bao nhiêu số nguyên \(x\) sao cho ứng với mỗi \(x\) có không quá 728 số nguyên \(y\) thỏa mãn \({\log _4}\left( {{x^2} + y} \right) \ge {\log _3}\left( {x + y} \right)\)? A. \(59\). B. \(58\). C. \(116\). D. \(115\). Lời giải: Bất phương trình đã cho tương đương \({\log _3}(x + y) - {\log _4}\left( {{x^2} + y} \right) \le 0\) Xét hàm số \(f\left( y … [Đọc thêm...] vềCó bao nhiêu số nguyên \(x\) sao cho ứng với mỗi \(x\) có không quá 728 số nguyên \(y\) thỏa mãn \({\log _4}\left( {{x^2} + y} \right) \ge {\log _3}\left( {x + y} \right)\)?

Tìm tham số \(m\) để phương trình \({\log _{\sqrt {2023} }}\left( {x – 2} \right) = {\log _{2023}}\left( {mx} \right)\) có nghiệm thực duy nhất.

Ngày 11/06/2023 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit Tag với:MU - LOGA VDC, Phuong trinh logarit

Tìm tham số \(m\) để phương trình \({\log _{\sqrt {2023} }}\left( {x - 2} \right) = {\log _{2023}}\left( {mx} \right)\) có nghiệm thực duy nhất. A. \(1 < m < 2\). B. \(m > 1\). C. \(m < 2\). D. \(m > 0\). Lời giải: Điều kiện \(\left\{ \begin{array}{l}x - 2 > 0\\mx > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > 2\\m … [Đọc thêm...] vềTìm tham số \(m\) để phương trình \({\log _{\sqrt {2023} }}\left( {x – 2} \right) = {\log _{2023}}\left( {mx} \right)\) có nghiệm thực duy nhất.

Có bao nhiêu số nguyên dương \(a\) sao cho ứng với mỗi \(a\) có đúng hai số nguyên \(b\) thỏa mãn \(\left( {\log _5^{}b – 1} \right)\left( {a{{\log }_2}b – 6} \right) < 0\)?

Ngày 11/06/2023 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit Tag với:HAM DAC TRUNG MU LOGA, MU - LOGA VDC, Phuong trinh logarit, VDC Toan 2023

Có bao nhiêu số nguyên dương \(a\) sao cho ứng với mỗi \(a\) có đúng hai số nguyên \(b\) thỏa mãn \(\left( {\log _5^{}b - 1} \right)\left( {a{{\log }_2}b - 6} \right) < 0\)? A. \(4\). B. \(3\). C. \(5\). D. \(7\). Lời giải: Theo giả thiết, ta có 2 trường hợp sau TH1: \(\left\{ \begin{array}{l}{\log _5}b - 1 < 0\\a{\log _2}b - 6 > 0\end{array} … [Đọc thêm...] vềCó bao nhiêu số nguyên dương \(a\) sao cho ứng với mỗi \(a\) có đúng hai số nguyên \(b\) thỏa mãn \(\left( {\log _5^{}b – 1} \right)\left( {a{{\log }_2}b – 6} \right) < 0\)?

Giá trị thực của tham số \(m\) để phương trình \(\log _2^2x – 4{\log _2}x + m + 1 = 0\left( 1 \right)\) có hai nghiệm phân biệt \({x_1}\), \({x_2}\) thỏa mãn \({\left( {{x_1} – {x_2}} \right)^2} + 3{x_1}{x_2} = 84\) thuộc khoảng nào sau đây

Ngày 11/06/2023 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit Tag với:MU - LOGA VDC, Phuong trinh logarit

Giá trị thực của tham số \(m\) để phương trình \(\log _2^2x - 4{\log _2}x + m + 1 = 0\left( 1 \right)\) có hai nghiệm phân biệt \({x_1}\), \({x_2}\) thỏa mãn \({\left( {{x_1} - {x_2}} \right)^2} + 3{x_1}{x_2} = 84\) thuộc khoảng nào sau đây A. \(\left( {1;3} \right)\). B. \(\left( {5;7} \right)\). C. \(\left( {3;5} \right)\). D. \(\left( { - 1;1} \right)\). Lời … [Đọc thêm...] vềGiá trị thực của tham số \(m\) để phương trình \(\log _2^2x – 4{\log _2}x + m + 1 = 0\left( 1 \right)\) có hai nghiệm phân biệt \({x_1}\), \({x_2}\) thỏa mãn \({\left( {{x_1} – {x_2}} \right)^2} + 3{x_1}{x_2} = 84\) thuộc khoảng nào sau đây

Có bao nhiêu giá trị nguyên của tham số \(m\) thuộc khoảng \(\left( { – 2023\,;2023} \right)\) để phương trình \({3.6^x} – \left( {7m – 48} \right).\sqrt {{6^x}} + 2{m^2} – 16m = 0\) có hai nghiệm phân biệt \({x_1},{x_2}\) thỏa mãn \({x_1} + {x_2} \ge 2\,\,?\)

Ngày 11/06/2023 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit Tag với:HAM DAC TRUNG MU LOGA, MU - LOGA VDC, Phuong trinh logarit, VDC Toan 2023

Có bao nhiêu giá trị nguyên của tham số \(m\) thuộc khoảng \(\left( { - 2023\,;2023} \right)\) để phương trình \({3.6^x} - \left( {7m - 48} \right).\sqrt {{6^x}} + 2{m^2} - 16m = 0\) có hai nghiệm phân biệt \({x_1},{x_2}\) thỏa mãn \({x_1} + {x_2} \ge 2\,\,?\) A. \(2023\). B. \(4036\). C. \(2022\). D. \(2014\). Lời giải: • Xét phương trình: \({3.6^x} - \left( … [Đọc thêm...] vềCó bao nhiêu giá trị nguyên của tham số \(m\) thuộc khoảng \(\left( { – 2023\,;2023} \right)\) để phương trình \({3.6^x} – \left( {7m – 48} \right).\sqrt {{6^x}} + 2{m^2} – 16m = 0\) có hai nghiệm phân biệt \({x_1},{x_2}\) thỏa mãn \({x_1} + {x_2} \ge 2\,\,?\)

Phương trình \({{\rm{e}}^x} – {{\rm{e}}^{\sqrt {2x + 1} }} = 1 – {x^2} + 2\sqrt {2x + 1} \) có nghiệm thuộc khoảng nào

Ngày 11/06/2023 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit Tag với:MU - LOGA VDC, Phuong trinh logarit

Phương trình \({{\rm{e}}^x} - {{\rm{e}}^{\sqrt {2x + 1} }} = 1 - {x^2} + 2\sqrt {2x + 1} \) có nghiệm thuộc khoảng nào A. \(\left( {\frac{3}{2};2} \right)\). B. \(\left( {1;\frac{3}{2}} \right)\). C. \(\left( {\frac{1}{2};1} \right)\). D. \(\left( {2;\frac{5}{2}} \right)\). Lời giải: Điều kiện: \(x \ge - \frac{1}{2}\). Ta có \({{\rm{e}}^x} - … [Đọc thêm...] vềPhương trình \({{\rm{e}}^x} – {{\rm{e}}^{\sqrt {2x + 1} }} = 1 – {x^2} + 2\sqrt {2x + 1} \) có nghiệm thuộc khoảng nào

Tìm \(m\) để bất phương trình \({3^x} + {4^x} + {5^x} + {6^x} \ge 4 + mx\) có tập nghiệm là \(\mathbb{R}\).

Ngày 11/06/2023 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit Tag với:HAM DAC TRUNG MU LOGA, MU - LOGA VDC, Phuong trinh logarit, VDC Toan 2023

Tìm \(m\) để bất phương trình \({3^x} + {4^x} + {5^x} + {6^x} \ge 4 + mx\) có tập nghiệm là \(\mathbb{R}\). A. \(m \in \left( {3;4} \right)\). B. \(m \in \left( {4;5} \right)\). C. \(m \in \left( {5;6} \right)\). D. \(m \in \left( {6;7} \right)\). Lời giải: + Với \(a > 1\) ta có \(\mathop {\lim }\limits_{x \to 0} \frac{{{a^x} - 1}}{x} = \mathop {\lim … [Đọc thêm...] vềTìm \(m\) để bất phương trình \({3^x} + {4^x} + {5^x} + {6^x} \ge 4 + mx\) có tập nghiệm là \(\mathbb{R}\).

  • « Chuyển đến Trang trước
  • Trang 1
  • Trang 2
  • Trang 3
  • Trang 4
  • Trang 5
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.