Cho \(0 \le x \le 2020\) và \({\log _9}(9x + 18) + x - 2y = {9^y}\).Có bao nhiêu cặp số \((x\,;y)\) nguyên thỏa mãn các điều kiện trên? A. \(2019\). B. \(2018\). C. \(1\). D. \(3\). Lời giải: Do \(0 \le x \le 2020\) nên \({\log _3}(9x + 18)\) luôn có nghĩa. Ta có \({\log _9}(9x + 18) + x - 2y = {9^y}\)\( \Leftrightarrow {\log _3}(x + 2) + x + 2 = 2y + … [Đọc thêm...] vềCho \(0 \le x \le 2020\) và \({\log _9}(9x + 18) + x – 2y = {9^y}\).Có bao nhiêu cặp số \((x\,;y)\) nguyên thỏa mãn các điều kiện trên?
MU - LOGA VDC
Tìm các giá trị thực của tham số \(m\) để phương trình \(\log _2^2x – 5{\log _2}x + 2m – 6 = 0\) có hai nghiệm thực \({x_1};\,{x_2}\) thỏa mãn \(\left( {{x_1} + 2} \right)\left( {{x_2} + 2} \right) = 60\).
Tìm các giá trị thực của tham số \(m\) để phương trình \(\log _2^2x - 5{\log _2}x + 2m - 6 = 0\) có hai nghiệm thực \({x_1};\,{x_2}\) thỏa mãn \(\left( {{x_1} + 2} \right)\left( {{x_2} + 2} \right) = 60\). A. \(m = 9\). B. \(m = 3\). C. không tồn tại. D. \(m = 6\). Lời giải: \(\log _2^2x - 5{\log _2}x + 2m - 6 = 0\;\left( 1 \right)\) Điều kiện: \(x > … [Đọc thêm...] vềTìm các giá trị thực của tham số \(m\) để phương trình \(\log _2^2x – 5{\log _2}x + 2m – 6 = 0\) có hai nghiệm thực \({x_1};\,{x_2}\) thỏa mãn \(\left( {{x_1} + 2} \right)\left( {{x_2} + 2} \right) = 60\).
Gọi \(S\)là tập nghiệm của phương trình \({\log _{\sqrt 3 }}(2x – 1) – {\log _3}({x^2} + 2) = 1\). Số phần tử của \(S\)là:
Gọi \(S\)là tập nghiệm của phương trình \({\log _{\sqrt 3 }}(2x - 1) - {\log _3}({x^2} + 2) = 1\). Số phần tử của \(S\)là: A. \(0\). B. \(2\). C. \(3\). D. \(1\). Lời giải: Điều kiện \(2x - 1 > 0 \Leftrightarrow x > \frac{1}{2}\). PT\( \Leftrightarrow 2{\log _3}(2x - 1) = {\log _3}3 + {\log _3}({x^2} + 2)\) \( \Leftrightarrow {\log _3}{(2x - 1)^2} … [Đọc thêm...] vềGọi \(S\)là tập nghiệm của phương trình \({\log _{\sqrt 3 }}(2x – 1) – {\log _3}({x^2} + 2) = 1\). Số phần tử của \(S\)là:
Tổng tất cả các nghiệm của phương trình \({\log _{\sqrt 2 }}(x – 1) + {\log _2}{(x – 5)^2} = 4\)là:
Tổng tất cả các nghiệm của phương trình \({\log _{\sqrt 2 }}(x - 1) + {\log _2}{(x - 5)^2} = 4\)là: A. \(9\) B. \(6 + 2\sqrt 2 \). C.\(6 - 2\sqrt 2 \) . D. \(6 + 2\sqrt 3 \) Lời giải: Điều kiện \(\left\{ \begin{array}{l}x > 1\\x \ne 5\end{array} \right.\). PT\( \Leftrightarrow 2{\log _2}(x - 1) + 2{\log _2}\left| {x - 5} \right| = 4\) \( … [Đọc thêm...] vềTổng tất cả các nghiệm của phương trình \({\log _{\sqrt 2 }}(x – 1) + {\log _2}{(x – 5)^2} = 4\)là:
Số nghiệm của phương trình \({\log _3}\left( {4x – {x^2}} \right) + {\log _{\frac{1}{3}}}\left( {\frac{2}{3}x – 1} \right) = 1\) là
Số nghiệm của phương trình \({\log _3}\left( {4x - {x^2}} \right) + {\log _{\frac{1}{3}}}\left( {\frac{2}{3}x - 1} \right) = 1\) là A. \(1\). B. \(2\). C. \(0\). D. \(3\). Lời giải: Điều kiện:\(\left\{ \begin{array}{l}4x - {x^2} > 0\\\frac{2}{3}x - 1 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}0 < x < 4\\x > … [Đọc thêm...] vềSố nghiệm của phương trình \({\log _3}\left( {4x – {x^2}} \right) + {\log _{\frac{1}{3}}}\left( {\frac{2}{3}x – 1} \right) = 1\) là
Tập \(P\) là tập hợp các nghiệm nguyên của bất phương trình \({\log _5}\left( {{x^2} – 6x + 5} \right) \le 1\). Số phần tử của tập \(P\) là
Tập \(P\) là tập hợp các nghiệm nguyên của bất phương trình \({\log _5}\left( {{x^2} - 6x + 5} \right) \le 1\). Số phần tử của tập \(P\) là A. \(2\). B. \(7\). C. \(5\). D. Vô số. Lời giải: Điều kiện:\({x^2} - 6x + 5 > 0 \Leftrightarrow \left[ \begin{array}{l}x < 1\\x > 5\end{array} \right.\) Ta có: \({\log _5}\left( {{x^2} - 6x + 5} \right) \le 1 … [Đọc thêm...] vềTập \(P\) là tập hợp các nghiệm nguyên của bất phương trình \({\log _5}\left( {{x^2} – 6x + 5} \right) \le 1\). Số phần tử của tập \(P\) là
Tập nghiệm S của bất phương trình \({\log _{\frac{2}{3}}}\left( {2x – 4} \right) + {\log _{\frac{2}{3}}}\left( {x + 3} \right) < {\log _{\frac{3}{2}}}\frac{1}{{28}}\) là
Tập nghiệm S của bất phương trình \({\log _{\frac{2}{3}}}\left( {2x - 4} \right) + {\log _{\frac{2}{3}}}\left( {x + 3} \right) < {\log _{\frac{3}{2}}}\frac{1}{{28}}\) là A. \(S = \left( {4;\, + \infty } \right)\). B. \(S = \left( {2;\;4} \right)\). C. \(S = \left( { - 5;\;4} \right)\). D. \(S = \left( { - \infty ;\; - 5} \right) \cup \left( {4;\; + \infty } … [Đọc thêm...] vềTập nghiệm S của bất phương trình \({\log _{\frac{2}{3}}}\left( {2x – 4} \right) + {\log _{\frac{2}{3}}}\left( {x + 3} \right) < {\log _{\frac{3}{2}}}\frac{1}{{28}}\) là
. Tập nghiệm của bất phương trình \({\log _{\frac{1}{2}}}\left( {x – 1} \right) + {\log _2}\left( {x – 1} \right) + {\log _2}\left( {x + 3} \right) \ge 1\) là
. Tập nghiệm của bất phương trình \({\log _{\frac{1}{2}}}\left( {x - 1} \right) + {\log _2}\left( {x - 1} \right) + {\log _2}\left( {x + 3} \right) \ge 1\) là A. \(\left[ {1;\, + \infty } \right)\). B. \(\left[ { - 1;\, + \infty } \right)\). C. \(\left( {1;\, + \infty } \right)\). D. \(\left( { - 3;\, + \infty } \right)\). Lời giải: Điều kiện: \(x > … [Đọc thêm...] về. Tập nghiệm của bất phương trình \({\log _{\frac{1}{2}}}\left( {x – 1} \right) + {\log _2}\left( {x – 1} \right) + {\log _2}\left( {x + 3} \right) \ge 1\) là
: Tập nghiệm của bất phương trình \(\log _2^2x – 5{\log _2}x + 6 \le 0\) là \(S = \left[ {a;b} \right]\). Tính \(2a + b\).
: Tập nghiệm của bất phương trình \(\log _2^2x - 5{\log _2}x + 6 \le 0\) là \(S = \left[ {a;b} \right]\). Tính \(2a + b\). A. \(8\) B. \( - 8\) C. \(7\) D. \({\rm{16}}\) Lời giải: Điều kiện \(x > 0\). Đặt \(t = {\log _2}x\) thì bất phương trình trở thành \({t^2} - 5t + 6 \le 0 \Leftrightarrow 2 \le t \le 3\). Thay \(t = {\log _2}x\) ta được \(2 \le … [Đọc thêm...] về: Tập nghiệm của bất phương trình \(\log _2^2x – 5{\log _2}x + 6 \le 0\) là \(S = \left[ {a;b} \right]\). Tính \(2a + b\).
Số nghiệm nguyên của bất phương trình \(\log _{\sqrt 2 }^2\left( {2x} \right) – 23{\log _2}x + 7 < 0\) là
Số nghiệm nguyên của bất phương trình \(\log _{\sqrt 2 }^2\left( {2x} \right) - 23{\log _2}x + 7 < 0\) là A. Vô số. B. \(5.\) C. \(3.\) D. \(4.\) Lời giải: Điều kiện: \(x > 0\). \(\log _{\sqrt 2 }^2\left( {2x} \right) - 23{\log _2}x + 7 < 0\) \( \Leftrightarrow {\left[ {{{\log }_{{2^{\frac{1}{2}}}}}\left( {2x} \right)} \right]^2} - 23{\log _2}x … [Đọc thêm...] vềSố nghiệm nguyên của bất phương trình \(\log _{\sqrt 2 }^2\left( {2x} \right) – 23{\log _2}x + 7 < 0\) là