• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

HAM SO MU VDC

Tìm \(m\) để phương trình 

\(\left( {m – 1} \right)\log _{\frac{1}{2}}^2{\left( {x – 2} \right)^2} + 4\left( {m – 5} \right){\log _{\frac{1}{2}}}\left( {\frac{1}{{x – 2}}} \right) + 4m – 4 = 0\) có nghiệm trên \(\left[ {\frac{5}{2};4} \right]\).

Ngày 01/07/2021 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:HAM SO MU VDC, Logarit nang cao, TN THPT 2021

DẠNG TOÁN PHƯƠNG PHÁP HÀM ĐẶC TRƯNG, BIẾN ĐỔI MŨ, LOGARIT – phát triển theo đề tham khảo Toán 2021   ĐỀ BÀI: Tìm \(m\) để phương trình  \(\left( {m - 1} \right)\log _{\frac{1}{2}}^2{\left( {x - 2} \right)^2} + 4\left( {m - 5} \right){\log _{\frac{1}{2}}}\left( {\frac{1}{{x - 2}}} \right) + 4m - 4 = 0\) có nghiệm trên \(\left[ {\frac{5}{2};4} … [Đọc thêm...] vềTìm \(m\) để phương trình 

\(\left( {m – 1} \right)\log _{\frac{1}{2}}^2{\left( {x – 2} \right)^2} + 4\left( {m – 5} \right){\log _{\frac{1}{2}}}\left( {\frac{1}{{x – 2}}} \right) + 4m – 4 = 0\) có nghiệm trên \(\left[ {\frac{5}{2};4} \right]\).

Cho hai số thực dương \(x\), \(y\) thỏa mãn biểu thức \({\log _4}x = {\log _6}y = {\log _9}\left( {x + y} \right)\). Giá trị của tỉ số \(\frac{x}{y}\) bằng

Ngày 01/07/2021 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:HAM SO MU VDC, Logarit nang cao, TN THPT 2021

DẠNG TOÁN PHƯƠNG PHÁP HÀM ĐẶC TRƯNG, BIẾN ĐỔI MŨ, LOGARIT – phát triển theo đề tham khảo Toán 2021   ĐỀ BÀI: Cho hai số thực dương \(x\), \(y\) thỏa mãn biểu thức \({\log _4}x = {\log _6}y = {\log _9}\left( {x + y} \right)\). Giá trị của tỉ số \(\frac{x}{y}\) bằng A. \(\frac{{ - 1 + \sqrt 5 }}{2}\).  B. \(\frac{{1 \pm \sqrt 5 … [Đọc thêm...] vềCho hai số thực dương \(x\), \(y\) thỏa mãn biểu thức \({\log _4}x = {\log _6}y = {\log _9}\left( {x + y} \right)\). Giá trị của tỉ số \(\frac{x}{y}\) bằng

Cho biết \(a\), \(b\), \(c\) là các số thực dương thỏa mãn biểu thức \({2018^a} = {2019^b} = {2020^c}\). Hãy tính giá trị của biểu thức \(P = \frac{a}{b} + \frac{b}{c}\).

Ngày 01/07/2021 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:HAM SO MU VDC, Logarit nang cao, TN THPT 2021

DẠNG TOÁN PHƯƠNG PHÁP HÀM ĐẶC TRƯNG, BIẾN ĐỔI MŨ, LOGARIT – phát triển theo đề tham khảo Toán 2021   ĐỀ BÀI: Cho biết \(a\), \(b\), \(c\) là các số thực dương thỏa mãn biểu thức \({2018^a} = {2019^b} = {2020^c}\). Hãy tính giá trị của biểu thức \(P = \frac{a}{b} + \frac{b}{c}\). A. \({\log _{2018}}2019\).  B. \({\log _{2018}}2019 + {\log … [Đọc thêm...] vềCho biết \(a\), \(b\), \(c\) là các số thực dương thỏa mãn biểu thức \({2018^a} = {2019^b} = {2020^c}\). Hãy tính giá trị của biểu thức \(P = \frac{a}{b} + \frac{b}{c}\).

Cho các số thực dương \(x,y\) thỏa mãn \({2020^{2019\left( {{x^2} – y + 4} \right)}} = \frac{{4x + y}}{{{{\left( {x + 2} \right)}^2}}}\). Tìm giá trị nhỏ nhất của biểu thức \(P = y – 2x\).

Ngày 01/07/2021 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:HAM SO MU VDC, Logarit nang cao, TN THPT 2021

DẠNG TOÁN PHƯƠNG PHÁP HÀM ĐẶC TRƯNG, BIẾN ĐỔI MŨ, LOGARIT – phát triển theo đề tham khảo Toán 2021   ĐỀ BÀI: Cho các số thực dương \(x,y\) thỏa mãn \({2020^{2019\left( {{x^2} - y + 4} \right)}} = \frac{{4x + y}}{{{{\left( {x + 2} \right)}^2}}}\). Tìm giá trị nhỏ nhất của biểu thức \(P = y - 2x\). A. \(\min P = 4\).  B. \(\min P = … [Đọc thêm...] vềCho các số thực dương \(x,y\) thỏa mãn \({2020^{2019\left( {{x^2} – y + 4} \right)}} = \frac{{4x + y}}{{{{\left( {x + 2} \right)}^2}}}\). Tìm giá trị nhỏ nhất của biểu thức \(P = y – 2x\).

Cho \(x,{\rm{ }}y\) là các số thực dương thoả mãn bất đẳng thức sau đây \(\log \frac{{x + 1}}{{3y + 1}} \le 9{y^4} + 6{y^3} – {x^2}{y^2} – 2{y^2}x\). Biết \(y \le 1000\), hỏi có bao nhiêu cặp số nguyên dương \(\left( {x;y} \right)\) thoả mãn bất đẳng thức.

Ngày 01/07/2021 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:HAM SO MU VDC, Logarit nang cao, TN THPT 2021

DẠNG TOÁN PHƯƠNG PHÁP HÀM ĐẶC TRƯNG, BIẾN ĐỔI MŨ, LOGARIT – phát triển theo đề tham khảo Toán 2021   ĐỀ BÀI: Cho \(x,{\rm{ }}y\) là các số thực dương thoả mãn bất đẳng thức sau đây \(\log \frac{{x + 1}}{{3y + 1}} \le 9{y^4} + 6{y^3} - {x^2}{y^2} - 2{y^2}x\). Biết \(y \le 1000\), hỏi có bao nhiêu cặp số nguyên dương \(\left( {x;y} \right)\) thoả mãn bất đẳng … [Đọc thêm...] vềCho \(x,{\rm{ }}y\) là các số thực dương thoả mãn bất đẳng thức sau đây \(\log \frac{{x + 1}}{{3y + 1}} \le 9{y^4} + 6{y^3} – {x^2}{y^2} – 2{y^2}x\). Biết \(y \le 1000\), hỏi có bao nhiêu cặp số nguyên dương \(\left( {x;y} \right)\) thoả mãn bất đẳng thức.

Có bao nhiêu cặp số nguyên \(\left( {x\,;\,y} \right)\) thỏa mãn điều kiện đề bài \(0 \le x \le 2020\) và \(3\left( {{9^y} + 2y} \right) = x + {\log _3}{\left( {x + 1} \right)^3} – 2\)?

Ngày 01/07/2021 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:HAM SO MU VDC, Logarit nang cao, TN THPT 2021

DẠNG TOÁN PHƯƠNG PHÁP HÀM ĐẶC TRƯNG, BIẾN ĐỔI MŨ, LOGARIT – phát triển theo đề tham khảo Toán 2021   ĐỀ BÀI: Có bao nhiêu cặp số nguyên \(\left( {x\,;\,y} \right)\) thỏa mãn điều kiện đề bài \(0 \le x \le 2020\) và \(3\left( {{9^y} + 2y} \right) = x + {\log _3}{\left( {x + 1} \right)^3} - 2\)? A. \(2\).  B. \(4\).  C. \(5\).  D. … [Đọc thêm...] vềCó bao nhiêu cặp số nguyên \(\left( {x\,;\,y} \right)\) thỏa mãn điều kiện đề bài \(0 \le x \le 2020\) và \(3\left( {{9^y} + 2y} \right) = x + {\log _3}{\left( {x + 1} \right)^3} – 2\)?

Cho số thực \(1 \le x \le 8\). Gọi giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P = \frac{{{{\log }_2}\frac{x}{{128}}}}{{{{\log }_2}x + 1}} – {\log _{\sqrt 2 }}x\) lần lượt là \(a,b\). Tính \(ab\).

Ngày 01/07/2021 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:HAM SO MU VDC, Logarit nang cao, TN THPT 2021

DẠNG TOÁN PHƯƠNG PHÁP HÀM ĐẶC TRƯNG, BIẾN ĐỔI MŨ, LOGARIT – phát triển theo đề tham khảo Toán 2021   ĐỀ BÀI: Cho số thực \(1 \le x \le 8\). Gọi giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P = \frac{{{{\log }_2}\frac{x}{{128}}}}{{{{\log }_2}x + 1}} - {\log _{\sqrt 2 }}x\) lần lượt là \(a,b\). Tính \(ab\). A. \(ab = 5\).  B. \(ab = … [Đọc thêm...] vềCho số thực \(1 \le x \le 8\). Gọi giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P = \frac{{{{\log }_2}\frac{x}{{128}}}}{{{{\log }_2}x + 1}} – {\log _{\sqrt 2 }}x\) lần lượt là \(a,b\). Tính \(ab\).

Cho bất phương trình \(\log 10x + {\log ^2}x + 3 \ge m.\log 100x\) với \(m\) là tham số thực. Có bao nhiêu giá trị của \(m\) nguyên dương để bất phương trình có nghiệm với mọi \(x\) thuộc \(\left[ {1; + \infty } \right)?\)

Ngày 01/07/2021 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:HAM SO MU VDC, Logarit nang cao, TN THPT 2021

DẠNG TOÁN PHƯƠNG PHÁP HÀM ĐẶC TRƯNG, BIẾN ĐỔI MŨ, LOGARIT – phát triển theo đề tham khảo Toán 2021   ĐỀ BÀI: Cho bất phương trình \(\log 10x + {\log ^2}x + 3 \ge m.\log 100x\) với \(m\) là tham số thực. Có bao nhiêu giá trị của \(m\) nguyên dương để bất phương trình có nghiệm với mọi \(x\) thuộc \(\left[ {1; + \infty } \right)?\) A. \(1\).  B. … [Đọc thêm...] vềCho bất phương trình \(\log 10x + {\log ^2}x + 3 \ge m.\log 100x\) với \(m\) là tham số thực. Có bao nhiêu giá trị của \(m\) nguyên dương để bất phương trình có nghiệm với mọi \(x\) thuộc \(\left[ {1; + \infty } \right)?\)

Có bao nhiêu cặp số nguyên \((x\,;\,y)\) thỏa mãn điều kiện \(x,\,y \in \left[ {3\,;\,48} \right]\) và 

\(\left( {x – 2} \right)\sqrt {y + 2}  = \sqrt {y + 1} .\sqrt {{x^2} – 4x + 5} \).

Ngày 01/07/2021 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:HAM SO MU VDC, Logarit nang cao, TN THPT 2021

DẠNG TOÁN PHƯƠNG PHÁP HÀM ĐẶC TRƯNG, BIẾN ĐỔI MŨ, LOGARIT – phát triển theo đề tham khảo Toán 2021   ĐỀ BÀI: Có bao nhiêu cặp số nguyên \((x\,;\,y)\) thỏa mãn điều kiện \(x,\,y \in \left[ {3\,;\,48} \right]\) và  \(\left( {x - 2} \right)\sqrt {y + 2}  = \sqrt {y + 1} .\sqrt {{x^2} - 4x + 5} \). A. \(46\).  B. \(6\).  C. … [Đọc thêm...] vềCó bao nhiêu cặp số nguyên \((x\,;\,y)\) thỏa mãn điều kiện \(x,\,y \in \left[ {3\,;\,48} \right]\) và 

\(\left( {x – 2} \right)\sqrt {y + 2}  = \sqrt {y + 1} .\sqrt {{x^2} – 4x + 5} \).

Có bao nhiêu cặp số nguyên \(\left( {x;y} \right),\,\,x \le 2020\) và thỏa mãn phương trình sau đây \({\log _2}x + {\log _2}\left( {x – y} \right) = 1 + 4{\log _4}y\).

Ngày 01/07/2021 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:HAM SO MU VDC, Logarit nang cao, TN THPT 2021

DẠNG TOÁN PHƯƠNG PHÁP HÀM ĐẶC TRƯNG, BIẾN ĐỔI MŨ, LOGARIT – phát triển theo đề tham khảo Toán 2021   ĐỀ BÀI: Có bao nhiêu cặp số nguyên \(\left( {x;y} \right),\,\,x \le 2020\) và thỏa mãn phương trình sau đây \({\log _2}x + {\log _2}\left( {x - y} \right) = 1 + 4{\log _4}y\). A. \(2020\).  B. \(1010\).  C. \(2019\).  D. … [Đọc thêm...] vềCó bao nhiêu cặp số nguyên \(\left( {x;y} \right),\,\,x \le 2020\) và thỏa mãn phương trình sau đây \({\log _2}x + {\log _2}\left( {x – y} \right) = 1 + 4{\log _4}y\).

  • « Chuyển đến Trang trước
  • Trang 1
  • Trang 2
  • Trang 3
  • Trang 4
  • Trang 5
  • Interim pages omitted …
  • Trang 7
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.