• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Bất đẳng thức Côsi

Đề bài: Tìm giá trị nhỏ nhất của hàm số:  \(f(x)=x+\frac{1}{x-1}\) với \(x>1\)

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Tìm giá trị nhỏ nhất của hàm số:  \(f(x)=x+\frac{1}{x-1}\) với \(x>1\) Lời giải Đề bài: Tìm giá trị nhỏ nhất của hàm số:  \(f(x)=x+\frac{1}{x-1}\) với \(x>1\) Lời giải Áp dụng bất đẳng thức Cauchy cho hai số dương \((x-1)\) và \(\frac{1}{x-1}\)Ta có: \((x-1)+\frac{1}{x-1}\geq … [Đọc thêm...] vềĐề bài: Tìm giá trị nhỏ nhất của hàm số:  \(f(x)=x+\frac{1}{x-1}\) với \(x>1\)

Đề bài: Chứng minh:a)   $a+\frac{1}{b(a-b)}\geq 3               \forall a>b>0                       (1)$b)   $a+\frac{4}{(a-b)(b+1)^2}\geq 3        \forall a>b>0             (2)$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Chứng minh:a)   $a+\frac{1}{b(a-b)}\geq 3               \forall a>b>0                       (1)$b)   $a+\frac{4}{(a-b)(b+1)^2}\geq 3        \forall a>b>0             (2)$ Lời giải Đề bài: Chứng minh:a)   $a+\frac{1}{b(a-b)}\geq 3               \forall a>b>0                       (1)$b)   $a+\frac{4}{(a-b)(b+1)^2}\geq 3        \forall a>b>0             … [Đọc thêm...] vềĐề bài: Chứng minh:a)   $a+\frac{1}{b(a-b)}\geq 3               \forall a>b>0                       (1)$b)   $a+\frac{4}{(a-b)(b+1)^2}\geq 3        \forall a>b>0             (2)$

Đề bài: Chứng minh rằng:$(1-\frac{1}{365})(1-\frac{2}{365})…(1-\frac{25}{365})

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Chứng minh rằng:$(1-\frac{1}{365})(1-\frac{2}{365})...(1-\frac{25}{365}) Lời giải Đề bài: Chứng minh rằng:$(1-\frac{1}{365})(1-\frac{2}{365})...(1-\frac{25}{365}) Lời giải Theo BĐT Cauchy:$\prod\limits_{k=1}^{25}(1-\frac{k}{365})\leq … [Đọc thêm...] vềĐề bài: Chứng minh rằng:$(1-\frac{1}{365})(1-\frac{2}{365})…(1-\frac{25}{365})

Đề bài: Chứng minh rằng dãy số $u_n=(1+\frac{1}{n})^n, (n=1,2,…)$ là một dãy số tăng, tức là

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Chứng minh rằng dãy số $u_n=(1+\frac{1}{n})^n, (n=1,2,...)$ là một dãy số tăng. Lời giải Đề bài: Chứng minh rằng dãy số $u_n=(1+\frac{1}{n})^n, (n=1,2,...)$là một dãy số tăng Lời giải Ta cần chứng minh $\displaystyle (1+\frac{1}{n})^n$ Áp dụng bất đẳng thức Côsi cho $n+1$ số dương không đồng thời bằng nhau: $1$  và  $\displaystyle \underbrace … [Đọc thêm...] vềĐề bài: Chứng minh rằng dãy số $u_n=(1+\frac{1}{n})^n, (n=1,2,…)$ là một dãy số tăng, tức là

Đề bài: Cho $0

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Cho $0 Lời giải Đề bài: Cho $0 Lời giải Áp dụng BĐT Cauchy cho $3$ số:$2x^{2}(1-x^{2})(1-x^{2})\leq (\frac{2x^{2}+1-x^{2}+1-x^{2}}{3})^3$$\Rightarrow 2x^{2}(1-x^{2})^{2}\leq \frac{8}{27}$$\Rightarrow x(1-x^{2})\leq \frac{2}{3\sqrt{3}}$$\Rightarrow … [Đọc thêm...] vềĐề bài: Cho $0

Đề bài: Cho $\begin{cases}x,y>0 \\ x+y= 1\end{cases}$.Tìm giá trị nhỏ nhất của:$P=\left ( 1-\frac{1}{x^{2}} \right )+\left ( 1-\frac{1}{y^{2}} \right )$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Cho $\begin{cases}x,y>0 \\ x+y= 1\end{cases}$.Tìm giá trị nhỏ nhất của:$P=\left ( 1-\frac{1}{x^{2}} \right )+\left ( 1-\frac{1}{y^{2}} \right )$ Lời giải Đề bài: Cho $\begin{cases}x,y>0 \\ x+y= 1\end{cases}$.Tìm giá trị nhỏ nhất của:$P=\left ( 1-\frac{1}{x^{2}} \right )+\left ( 1-\frac{1}{y^{2}} \right )$ Lời giải … [Đọc thêm...] vềĐề bài: Cho $\begin{cases}x,y>0 \\ x+y= 1\end{cases}$.Tìm giá trị nhỏ nhất của:$P=\left ( 1-\frac{1}{x^{2}} \right )+\left ( 1-\frac{1}{y^{2}} \right )$

Đề bài:  Cho $x,y,z$ là các số thực thỏa mãn $x^2+y^2+z^2 \leq 1$Tìm giá trị lớn nhất của biểu thức $Q=xy+yz+2zx$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài:  Cho $x,y,z$ là các số thực thỏa mãn $x^2+y^2+z^2 \leq 1$Tìm giá trị lớn nhất của biểu thức $Q=xy+yz+2zx$ Lời giải Đề bài:  Cho $x,y,z$ là các số thực thỏa mãn $x^2+y^2+z^2 \leq 1$Tìm giá trị lớn nhất của biểu thức $Q=xy+yz+2zx$ Lời giải Với $\forall a \neq 0$ ta có … [Đọc thêm...] vềĐề bài:  Cho $x,y,z$ là các số thực thỏa mãn $x^2+y^2+z^2 \leq 1$Tìm giá trị lớn nhất của biểu thức $Q=xy+yz+2zx$

Đề bài: Tìm giá trị nhỏ nhất của hàm số:  \(f(x)=x+\frac{3}{x}\) với \(x>0\)

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Tìm giá trị nhỏ nhất của hàm số:  \(f(x)=x+\frac{3}{x}\) với \(x>0\) Lời giải Đề bài: Tìm giá trị nhỏ nhất của hàm số:  \(f(x)=x+\frac{3}{x}\) với \(x>0\) Lời giải Áp dụng BĐT Cauchy cho \(2\) số không âm \(x\) và \(\frac{3}{x}\).Ta có: \(f(x)=x+\frac{3}{x}\geq … [Đọc thêm...] vềĐề bài: Tìm giá trị nhỏ nhất của hàm số:  \(f(x)=x+\frac{3}{x}\) với \(x>0\)

Đề bài: Cho $a, b, c$ là $3$ số dương. Chứng minh:a)     $\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\geq 6                               (1)$b)     $\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\geq \frac{3}{2}                             (2)$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Cho $a, b, c$ là $3$ số dương. Chứng minh:a)     $\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\geq 6                               (1)$b)     $\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\geq \frac{3}{2}                             (2)$ Lời giải Đề bài: Cho $a, b, c$ là $3$ số dương. Chứng minh:a)     $\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\geq … [Đọc thêm...] vềĐề bài: Cho $a, b, c$ là $3$ số dương. Chứng minh:a)     $\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\geq 6                               (1)$b)     $\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\geq \frac{3}{2}                             (2)$

Đề bài: Chứng minh rằng với mọi m,n,p dương ta có:$m^3+n^3+p^3-m^2n-mn^2-n^2p-np^2-p^2m-pm^2+3mnp\geq 0$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Chứng minh rằng với mọi m,n,p dương ta có:$m^3+n^3+p^3-m^2n-mn^2-n^2p-np^2-p^2m-pm^2+3mnp\geq 0$ Lời giải Đề bài: Chứng minh rằng với mọi m,n,p dương ta có:$m^3+n^3+p^3-m^2n-mn^2-n^2p-np^2-p^2m-pm^2+3mnp\geq 0$ Lời giải Bất đẳng thức đã cho có thể viết dưới dạng: $mnp\geq … [Đọc thêm...] vềĐề bài: Chứng minh rằng với mọi m,n,p dương ta có:$m^3+n^3+p^3-m^2n-mn^2-n^2p-np^2-p^2m-pm^2+3mnp\geq 0$

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 9
  • Trang 10
  • Trang 11
  • Trang 12
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.