• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

Đề bài: Cho $a, b, c$ là $3$ số dương. Chứng minh:a)     $\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\geq 6                               (1)$b)     $\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\geq \frac{3}{2}                             (2)$

Đăng ngày: 11/07/2021 Biên tập: admin Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

adsense
Đề bài: Cho $a, b, c$ là $3$ số dương. Chứng minh:a)     $\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\geq 6                               (1)$b)     $\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\geq \frac{3}{2}                             (2)$

Bat dang thuc

Lời giải

Đề bài:
Cho $a, b, c$ là $3$ số dương. Chứng minh:a)     $\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\geq 6                               (1)$b)     $\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\geq \frac{3}{2}                             (2)$
Lời giải

a) Ta có VT $=\left ( \frac{a}{c}+\frac{c}{a} \right )+\left ( \frac{b}{c}+\frac{c}{b} \right )+\left ( \frac{a}{b}+\frac{b}{a} \right )\geq 2\sqrt{\frac{a.c}{c.a}}+2\sqrt{\frac{b.c}{c.b}}+2\sqrt{\frac{a.b}{b.a}}=6$.
Dấu bằng xảy ra khi a=b=c.

adsense

b) $(2)\Leftrightarrow (\frac{a}{b+c}+1)+(\frac{b}{a+c}+1)+(\frac{c}{a+b}+1)\geq 3+\frac{3}{2}$

$\Leftrightarrow (a+b+c)(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b})\geq \frac{9}{2}$

$\Leftrightarrow \frac{1}{2}[(b+c)+(c+a)+(a+b)][\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}]\geq \frac{9}{2}$.
Dấu bằng xảy ra khi a=b=c.

=========
Chuyên mục: Bất đẳng thức Côsi

Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Bài liên quan:

  1. Đề bài: $1.$ Cho hình thang cân $ABCD$ có đáy là $AD, BC$, $\widehat {BAD} = {30^0}$. Biết  $\overrightarrow{AB}=\overrightarrow {a} ,\overrightarrow {AD}  =\overrightarrow {b} .$Hãy biểu diễn các véctơ $\overrightarrow {BC} ,\overrightarrow {CD},\overrightarrow {AC}  ,\overrightarrow {BD} $ theo các véctơ $\overrightarrow {a},\overrightarrow {b}  .$$2.$ Chứng minh rằng $\forall  \in (0;\frac{\pi}{2} )$ đều có$cosx +sinx +tanx+cotx+\frac{1}{sinx }+\frac{1}{cosx } >6$
  2. Đề bài: Cho $x,y>0; x+y
  3. Đề bài: Chứng minh rằng: \(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\geq a+b+c\) với \(a,b,c\geq 0\).
  4. Đề bài: Chứng minh rằng : $\forall x \in \left( {0,\frac{\pi }{2}} \right)$ ta có ${2^{2\sin x}} + {2^{tanx}} > {2^{\frac{{3x}}{2} + 1}}$
  5. Đề bài: Cho hai số dương $a,b$ thỏa mãn $a+b=1$. Chứng minh rằng:  $(a+\frac{1}{a})^2+(b+\frac{1}{b})^2\geq \frac{25}{2}$
  6. Đề bài: Chứng minh rằng với mọi $x\in R$, ta có:     $(\frac{12}{5})^x+(\frac{15}{4})^x+(\frac{20}{3})^x\geq 3^x+4^x+5^x$. Khi nào đẳng thức xảy ra?
  7. Đề bài: Cho $a,b,c>0$.Chứng minh rằng:$\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}
  8. Đề bài: Cho $x,y,z>0$ và $xyz=xy+yz+zx$.Chứng minh: $P=\frac{1}{x+2y+3z}+\frac{1}{2x+3y+z}+\frac{1}{3x+y+2z}
  9. Đề bài: Cho $x,y,z,t>0$. Tìm giá trị nhỏ nhất của biểu thức:$P=\frac{x-t}{t+y}+\frac{t-y}{y+z}+\frac{y-z}{z+x}+\frac{z-x}{x+t}$.
  10. Đề bài: Xác định dạng của tam giác nếu   $S = \frac{ \sqrt{3} }{ 36} (a+b+c)^2     (1)$
  11. Đề bài: Chứng minh với mọi $a  ,b$  mà  $a+b=1$  thì  $\frac{1}{a+1}+\frac{1}{b+1} \geq \frac{4}{3}.   $
  12. Đề bài: Chứng minh rằng với mọi số thực không âm $a,b$ ta có:    $16ab(a-b)^2\leq (a+b)^4$
  13. Đề bài: Cho các số thực $x,y,z>0$. Chứng minh rằng:       $16xyz(x+y+z)\leq 3\sqrt[3]{(x+y)^4(y+z)^4(z+x)^4}$.
  14. Đề bài: Cho $a,b,c,d>0$.Chứng minh rằng:$\frac{a^{2}}{b^{5}}+\frac{b^{2}}{c^{5}}+\frac{c^{2}}{d^{5}}+\frac{d^{2}}{a^{5}}\geq \frac{1}{a^{3}}+\frac{1}{b^{3}}+\frac{1}{c^{3}}+\frac{1}{d^{3}}$
  15. Đề bài: Cho $x,y,z>0$ và $x^2+y^2+z^2=1$.Chứng minh $\frac{x}{y^2+z^2}+\frac{y}{x^2+z^2}+\frac{z}{y^2+x^2}\geq \frac{3\sqrt{3}}{2}$.

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2023) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.