• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

Đề bài: Với $a,b,c>0$ chứng minh rằng:     $\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{a+b+c}{2abc}$.

Đăng ngày: 11/07/2021 Biên tập: admin Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

adsense
Đề bài: Với $a,b,c>0$ chứng minh rằng:     $\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{a+b+c}{2abc}$.

Bat dang thuc

Lời giải

Đề bài:
Với $a,b,c>0$ chứng minh rằng:     $\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{a+b+c}{2abc}$.
Lời giải

adsense

Ta lần lượt có:   
   $
\displaystyle \frac{1}{a^2+bc}\leq \frac{1}{2\sqrt{a^2bc}}=
\frac{1}{2a\sqrt{bc}}=\frac{\sqrt{bc}}{2abc}\leq \frac{
\displaystyle \frac{1}{2}(b+c)}{2abc}=\frac{b+c}{4abc}       (1)$
    $
\displaystyle \frac{1}{b^2+ac}\leq
\frac{1}{2\sqrt{b^2ac}}=\frac{1}{2b\sqrt{ac}}=\frac{\sqrt{ac}}{2abc}\leq
\frac{
\displaystyle \frac{1}{2}(a+c)}{2abc}=\frac{a+c}{4abc}      (2)$
    $
\displaystyle \frac{1}{c^2+ab}\leq
\frac{1}{2\sqrt{c^2ab}}=\frac{1}{2c\sqrt{ab}}=\frac{\sqrt{ab}}{2abc}\leq
\frac{
\displaystyle \frac{1}{2}(a+b)}{2abc}=\frac{a+b}{4abc}          (3)$
Cộng theo vế các bất đẳng thức $(1),(2),(3)$, ta được  :  
      $
\displaystyle \frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{a+b+c}{2abc}$, đcmp.
Dấu đẳng thức xảy ra khi $a=b=c$

=========
Chuyên mục: Bất đẳng thức Côsi

Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Bài liên quan:

  1. Đề bài: $1.$ Cho hình thang cân $ABCD$ có đáy là $AD, BC$, $\widehat {BAD} = {30^0}$. Biết  $\overrightarrow{AB}=\overrightarrow {a} ,\overrightarrow {AD}  =\overrightarrow {b} .$Hãy biểu diễn các véctơ $\overrightarrow {BC} ,\overrightarrow {CD},\overrightarrow {AC}  ,\overrightarrow {BD} $ theo các véctơ $\overrightarrow {a},\overrightarrow {b}  .$$2.$ Chứng minh rằng $\forall  \in (0;\frac{\pi}{2} )$ đều có$cosx +sinx +tanx+cotx+\frac{1}{sinx }+\frac{1}{cosx } >6$
  2. Đề bài: Cho $x,y>0; x+y
  3. Đề bài: Chứng minh rằng: \(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\geq a+b+c\) với \(a,b,c\geq 0\).
  4. Đề bài: Phân tích số $16$ thành tổng của $2$ số dương sao cho tổng bình phương của chúng là nhỏ nhất.
  5. Đề bài: Chứng minh rằng với mọi số thực $a,b$ thỏa mãn $a\geq \frac{1}{2}, a>b$.  Ta có: $\frac{2a^3+1}{4b(a-b)}\geq 3$
  6. Đề bài: Chứng minh rằng với mọi $x\in R$, ta có:     $(\frac{12}{5})^x+(\frac{15}{4})^x+(\frac{20}{3})^x\geq 3^x+4^x+5^x$. Khi nào đẳng thức xảy ra?
  7. Đề bài: Cho $a,b,c>0$.Chứng minh rằng:$\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}
  8. Đề bài: Cho $x,y,z>0$ và $xyz=xy+yz+zx$.Chứng minh: $P=\frac{1}{x+2y+3z}+\frac{1}{2x+3y+z}+\frac{1}{3x+y+2z}
  9. Đề bài: Cho $x,y,z,t>0$. Tìm giá trị nhỏ nhất của biểu thức:$P=\frac{x-t}{t+y}+\frac{t-y}{y+z}+\frac{y-z}{z+x}+\frac{z-x}{x+t}$.
  10. Đề bài: Xác định dạng của tam giác nếu   $S = \frac{ \sqrt{3} }{ 36} (a+b+c)^2     (1)$
  11. Đề bài: Chứng minh rằng : $\forall x \in \left( {0,\frac{\pi }{2}} \right)$ ta có ${2^{2\sin x}} + {2^{tanx}} > {2^{\frac{{3x}}{2} + 1}}$
  12. Đề bài: Cho hai số dương $a,b$ thỏa mãn $a+b=1$. Chứng minh rằng:  $(a+\frac{1}{a})^2+(b+\frac{1}{b})^2\geq \frac{25}{2}$
  13. Đề bài: Cho các số thực $x,y,z>0$. Chứng minh rằng:       $16xyz(x+y+z)\leq 3\sqrt[3]{(x+y)^4(y+z)^4(z+x)^4}$.
  14. Đề bài: Cho $a,b,c,d>0$.Chứng minh rằng:$\frac{a^{2}}{b^{5}}+\frac{b^{2}}{c^{5}}+\frac{c^{2}}{d^{5}}+\frac{d^{2}}{a^{5}}\geq \frac{1}{a^{3}}+\frac{1}{b^{3}}+\frac{1}{c^{3}}+\frac{1}{d^{3}}$
  15. Đề bài: Cho $x,y,z>0$ và $x^2+y^2+z^2=1$.Chứng minh $\frac{x}{y^2+z^2}+\frac{y}{x^2+z^2}+\frac{z}{y^2+x^2}\geq \frac{3\sqrt{3}}{2}$.

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2023) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.