• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Bất đẳng thức Côsi

Đề bài: Chứng minh rằng với mọi số thức không âm $a,b$ ta luôn có:    $\frac{a+b}{2}\geq \sqrt{ab}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Chứng minh rằng với mọi số thức không âm $a,b$ ta luôn có:    $\frac{a+b}{2}\geq \sqrt{ab}$ Lời giải Đề bài: Chứng minh rằng với mọi số thức không âm $a,b$ ta luôn có:    $\frac{a+b}{2}\geq \sqrt{ab}$ Lời giải Biến đổi tương đương bất đẳng thức về dạng:$(\frac{a+b}{2})^2\geq … [Đọc thêm...] vềĐề bài: Chứng minh rằng với mọi số thức không âm $a,b$ ta luôn có:    $\frac{a+b}{2}\geq \sqrt{ab}$

Đề bài:  Tìm tất cả các giá trị của $x$ để biểu thức sau đạt giá trị nhỏ nhất:                         \(P = x\left( {1 – x} \right)\left( {x – 3} \right)\left( {4 – x} \right)\)

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài:  Tìm tất cả các giá trị của $x$ để biểu thức sau đạt giá trị nhỏ nhất:                         \(P = x\left( {1 - x} \right)\left( {x - 3} \right)\left( {4 - x} \right)\) Lời giải Đề bài:  Tìm tất cả các giá trị của $x$ để biểu thức sau đạt giá trị nhỏ nhất:                         \(P = x\left( {1 - x} \right)\left( {x - 3} \right)\left( {4 - x} … [Đọc thêm...] vềĐề bài:  Tìm tất cả các giá trị của $x$ để biểu thức sau đạt giá trị nhỏ nhất:                         \(P = x\left( {1 – x} \right)\left( {x – 3} \right)\left( {4 – x} \right)\)

Đề bài: Chứng minh rằng với mọi $x, y$ dương ta có:  \({x^2} + {y^2} + \frac{1}{x} + \frac{1}{y} \ge 2\left( {\sqrt x  + \sqrt y } \right)\)

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Chứng minh rằng với mọi $x, y$ dương ta có:  \({x^2} + {y^2} + \frac{1}{x} + \frac{1}{y} \ge 2\left( {\sqrt x  + \sqrt y } \right)\) Lời giải Đề bài: Chứng minh rằng với mọi $x, y$ dương ta có:  \({x^2} + {y^2} + \frac{1}{x} + \frac{1}{y} \ge 2\left( {\sqrt x  + \sqrt y } \right)\) Lời giải … [Đọc thêm...] vềĐề bài: Chứng minh rằng với mọi $x, y$ dương ta có:  \({x^2} + {y^2} + \frac{1}{x} + \frac{1}{y} \ge 2\left( {\sqrt x  + \sqrt y } \right)\)

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 10
  • Trang 11
  • Trang 12

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.