• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán, Lý, Hóa, Sinh, Anh, Soạn Văn từ lớp 1 đến lớp 12, Học toán và Đề thi toán

newshop.vn
  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Môn Lý
  • Môn Hóa
  • Môn Anh
  • Môn Sinh
  • Môn Văn
Bạn đang ở:Trang chủ / Bài tập Hàm số / Đề: Tính đạo hàm của mỗi hàm số sau trên khoảng xác định của nóa) $y = (x^2 – x + 1) e^x$                                           b) $y = (\sin x + \cos x)e^{3x}$c) $y = \frac{e^x + e^{-x}}{e^x – e{-x}} $                                                          d) $y = \sqrt{e^x } – 2008^x $

Đề: Tính đạo hàm của mỗi hàm số sau trên khoảng xác định của nóa) $y = (x^2 – x + 1) e^x$                                           b) $y = (\sin x + \cos x)e^{3x}$c) $y = \frac{e^x + e^{-x}}{e^x – e{-x}} $                                                          d) $y = \sqrt{e^x } – 2008^x $

Đăng ngày: 06/03/2020 Biên tâp: admin Để lại bình luận Thuộc chủ đề:Bài tập Hàm số

ham so
Đề bài: Tính đạo hàm của mỗi hàm số sau trên khoảng xác định của nóa) $y = (x^2 – x + 1) e^x$                                           b) $y = (\sin x + \cos x)e^{3x}$c) $y = \frac{e^x + e^{-x}}{e^x – e{-x}} $                                                          d) $y = \sqrt{e^x } – 2008^x $

Lời giải

a) $y’ = (x^2 – x + 1)’ e^x + (x^2 – x + 1)(e^x)’$
$= (2x – 1)e^x + (x^2 – x + 1) e^x = e^x (x^2 + x)$

b) $y’ = (\sin x + \cos x)’ e^{3x} + (\sin x + \cos x) (e^{3x})’$
$= (\cos x – \sin x)e ^{3x} + (\sin + \cos x) .3.(e^{3x})$
$=e^{3x} (\cos x – \sin x + 3\sin x + 3 \cos x) = e^{3x}(4\cos x + 2\sin x).$

c) $y’ =\frac{(e^x + e^{-x}) ‘(e^x – e^{-x}) – (e^x – e^{-x}) ‘(e^x + e^{-x})}{(e^x – e^{-x})^2} $
$= \frac{(e^x – e^{-x}) (e^x – e^{-x}) – (e^x + e^{-x}) (e^x + e^{-x})}{(e^x – e^{-x})^2} $
$= \frac{(e^x – e^{-x})^2 – (e^x – e^{-x})^2}{(e^x – e^{-x})^2} = \frac{-4e^x .e^{-x}}{(e^x – e^{-x})^2} = \frac{-4e^{x-x}}{(e^x-e^{-x})^2} = \frac{-4}{(e^x – e^{-x})^2}  $

d) $y’ = (\sqrt{ e^x})’ – (2008^x)’ = \frac{(e^x)’}{2\sqrt{ e^x}}  – 2008^x \ln 2008 = \frac{e^x}{2\sqrt{e^x } } – 2008^x \ln 2008  $

Tag với:Đạo hàm

Bài liên quan:

  • Đề: Cho hàm số \(y=2x^{2}-3x+1\). Tính số gia của hàm số tại điểm \(x_{0}=2\) với số gia của đối số cho tương ứng.a) \(\Delta x=0,1\)b) \(\Delta x=0,2\).
  • Đề: Tính $\frac{f^{'}(1)}{\varphi^{'}(1)} $, Biết rằng $f(x)=x^{2}$ và $\varphi (x)=4x+\sin \frac{\pi x}{2}$
  • Đề: Cho hàm số \(y=f(x)=2x^{2}-x+1\).a) Tìm đạo hàm của hàm số tại điểm \(x\).b) Tìm phương trình của tiếp tuyến với đồ thị hàm số tại điểm thuộc đồ thị có hoành độ \(x=1\).
  • Đề: Tìm đạo hàm cấp \(n\) của hàm số \(f(x)=\frac{1}{x^{2}-x+6}\).
  • Đề: Dùng định nghĩa tính đạo hàm của hàm số sau đây tại điểm \(x\).a) \(y=\frac{2x-1}{x+1}\)b) \(y=\sqrt{x+1}+x\)
  • Đề: Tính đạo hàm của các hàm số:a) $y = \sqrt[ 5]{ \ln ^3 5x} $;                            b) $y = \sqrt[ 3]{\frac{1+x^3}{1-x^3}  } $c) $y = \left ( \frac{x}{b} \right)^a . \left (\frac{a}{x}\right)^b  $ với $a> 0, b > 0$
  • Đề: Chứng tỏ rằng hàm số $y = a \cos x + b \sin x$, trong đó $a,b$ là các hằng số tùy ý, thỏa mãn phương trình: $ y''+y = 0$
  • Đề: Cho hàm số:  $ f(x) = \sqrt{-x^2+3x-2}$Tìm $m$ để phương trình sau có nghiệm:  $ \frac{2f^2(x)}{(3-2x)}f'(x) = \sqrt{2m+x-x^2} \,\,\,\,\,\,\,(1)$
  • Đề: Tìm đạo hàm của các hàm số sau : a) $y = \frac{2}{\sqrt{x+1}+\sqrt{x-1}  }$                  b) $y = \frac{1}{(x+1)\sqrt{x+1} }$
  • Đề: Dùng định nghĩa tính đạo hàm của các hàm số sau tai $x_{0}$1)$f(x)=\sqrt{1-x}                        x_{0}=-2$2)$f(x)=\frac{2x-3}{x-1}                                                     x_{0}=3$

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Bài tập tự luận về hàm số




Booktoan.com (2015 - 2021) Học Toán online - Giải bài tập môn Toán, Lý, Hóa, Sinh, Anh, Soạn Văn, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.