• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

Đề: Cho hàm số $y = x^3 + 3x^2 + mx + 1$ có đồ thị là $(C_m)$. Tìm $m$ để $(C_m)$ cắt đường $y = 1$ tại ba điểm phân biệt $C(0; 1), D, E$ sao cho tiếp tuyến tại $D, E$ vuông góc với nhau.

Đăng ngày: 14/03/2020 Biên tập: admin Thuộc chủ đề:Bài tập Hàm số Tag với:Tiếp tuyến của đồ thị

adsense

ham so
Đề bài: Cho hàm số $y = x^3 + 3x^2 + mx + 1$ có đồ thị là $(C_m)$. Tìm $m$ để $(C_m)$ cắt đường $y = 1$ tại ba điểm phân biệt $C(0; 1), D, E$ sao cho tiếp tuyến tại $D, E$ vuông góc với nhau.

Lời giải

adsense

Phương trình hoành độ giao điểm của 2 đường là:
 $ {{\rm{x}}^{\rm{3}}} + {\rm{ 3}}{{\rm{x}}^{\rm{2}}} + {\rm{ mx }} + {\rm{ 1 }} = {\rm{ 1}} \Leftrightarrow {\rm{x}}\left( {{{\rm{x}}^{\rm{2}}} + {\rm{ 3x }} + {\rm{ m}}} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}
x = 0 \\
{x^2} + 3x + m = 0 & (2)
\end{array} \right. $
(Cm) cắt đường thẳng y = 1 tại C(0;1), D, E phân biệt:
$\Leftrightarrow $ phương trình (2) có 2 nghiệm $x_D, x_E \neq 0$ $ \Leftrightarrow \left\{ \begin{array}{l}
\Delta  = 9 – 4m > 0\\
{0^2} + 3 \times 0 + m \ne 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
m \ne 0\\
m \end{array} \right. $ (*)
Khi đó tiếp tuyến tại D, E có hệ số góc lần lượt là:
              $ {{\rm{k}}_{\rm{D}}} = {\rm{y’}}\left( {{{\rm{x}}_{\rm{D}}}} \right) = 3x_D^2 + 6{x_D} + m =  – (3{x_D} + 2m); $
              $ {{\rm{k}}_{\rm{E}}} = {\rm{y}}’\left( {{{\rm{x}}_{\rm{E}}}} \right) = 3x_E^2 + 6{x_E} + m =  – (3{x_E} + 2m). $
Các tiếp tuyến tại D, E vuông góc với nhau khi và chỉ khi:  $ \begin{array}{l}
{{\rm{k}}_{\rm{D}}}{{\rm{k}}_{\rm{E}}} = {\rm{ }}-{\rm{1}} \Leftrightarrow \left( {{\rm{3}}{{\rm{x}}_{\rm{D}}} + {\rm{ 2m}}} \right)\left( {{\rm{3}}{{\rm{x}}_{\rm{E}}} + {\rm{ 2m}}} \right){\rm{ }} =  – {\rm{1}}\\\Leftrightarrow {\rm{9}}{{\rm{x}}_{\rm{D}}}{{\rm{x}}_{\rm{E}}} + {\rm{6m}}\left( {{{\rm{x}}_{\rm{D}}} + {\rm{ }}{{\rm{x}}_{\rm{E}}}} \right){\rm{ }} + {\rm{ 4}}{{\rm{m}}^{\rm{2}}} = {\rm{ }}-{\rm{1}}\\
 \Leftrightarrow {\rm{9m }} + {\rm{ 6m}}\left( {-{\rm{3}}} \right){\rm{ }} + {\rm{ 4}}{{\rm{m}}^{\rm{2}}} = {\rm{ }}-{\rm{1}}
\end{array} $
$ {\rm{4}}{{\rm{m}}^{\rm{2}}}-{\rm{ 9m }} + {\rm{ 1 }} = {\rm{ }}0 \Leftrightarrow \left[ \begin{array}{l}
m = \frac{{9 + \sqrt {65} }}{8}\\
m = \frac{{9 – \sqrt {65} }}{8}
\end{array} \right. $    (vì  $ {{\rm{x}}_{\rm{D}}} + {\rm{ }}{{\rm{x}}_{\rm{E}}} = {\rm{ }}-{\rm{3}};{\rm{ }}{{\rm{x}}_{\rm{D}}}{{\rm{x}}_{\rm{E}}} = {\rm{ m}} $  theo Vi-ét).  
So sánh với (*) ta có: m =  $ \frac{1}{8}\left( {9 \pm \sqrt {65} } \right)\,\, $

Thuộc chủ đề:Bài tập Hàm số Tag với:Tiếp tuyến của đồ thị

Bài liên quan:

  1. Cho hàm số \(y = – {x^3} + 3{x^2} – 7x + 2\). Tiếp tuyến của đồ thị hàm số có hệ số góc lớn nhất có phương trình là

  2. Cho hai hàm số \(y = {x^2}\) (\({C_1}\)) và \(y = \sqrt {5 – {x^2}} – \frac{{41}}{{16}}\) (\({C_2}\)). Phương trình tiếp tuyến chung của hai đồ thị \(\left( {{C_1}} \right),\;\,\left( {{C_2}} \right)\) có hệ số góc dương là

  3. Cho hàm số \(y = \frac{{{x^2} – x – 2}}{{x – 3}}\) có đồ thị \(\left( C \right)\). Có bao nhiêu tiếp tuyến của đồ thị \(\left( C \right)\) đi qua điểm \(A\left( {4\,;\,1} \right)\)?

  4. Cho hàm số \(f(x) = \frac{{x + 1}}{{x – 1}}\) có đồ thị \(\left( H \right)\). Tìm trên \(Oy\)tất cả các điểm từ đó kẻ được duy nhất một tiếp tuyến tới \(\left( H \right)\).

  5. Hỏi có bao nhiêu giá trị của tham số \(m\) để đồ thị hàm số \(y = {x^4} – 2m{x^2} + 3m\) tiếp xúc với trục hoành tại hai điểm phân biệt?

  6. Cho hàm số \(y = \frac{{3x – 1}}{{x – 1}}\) có đồ thị \((C)\). Biết \(y = ax + b\) là phương trình tiếp tuyến của \((C)\) có hệ số góc nhỏ nhất trong các tiếp tuyến có hoành độ tiếp điểm là số nguyên dương. Tính \(2a + b\).

  7. Cho hàm số \(y = {\log _2}\frac{{x + 3}}{{2 – x}}\) có đồ thị \(\left( C \right)\). Phương trình tiếp tuyến đồ thị hàm số tại giao điểm của đồ thị \(\left( C \right)\) với đường thẳng \(d:y = 2\) là:

  8. Xét đồ thị \(\left( C \right)\) của hàm số \(y = {x^3} + 3ax + b\) với \(a,b\) là các số thực. Gọi \(M\), \(N\) là hai điểm phân biệt thuộc \(\left( C \right)\) sao cho tiếp tuyến với \(\left( C \right)\) tại hai điểm đó có hệ số góc bằng \(3\). Biết khoảng cách từ gốc tọa độ tới đường thẳng \(MN\)bằng \(1\). Khi đó giá trị lớn nhất của \({a^2} – {b^2}\) bằng

  9. Cho hàm số \(y = \frac{{2x}}{{x + 1}}\) có đồ thị \(\left( C \right)\). Biết rằng có hai tiếp tuyến của đồ thị \(\left( C \right)\) đi qua điểm \(A\left( {0\,;\,1} \right)\). Tích hệ số góc của hai tiếp tuyến đó bằng
  10. Cho hai hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) đều có đạo hàm trên \(\mathbb{R}\) và thỏa mãn \({f^3}\left( {2 – x} \right) – 2.{f^2}\left( {2 + 3x} \right) + {x^2}.g\left( x \right) + 36x = 0\), \(\forall x \in \mathbb{R}\). Phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại \({x_o} = 2\) là
  11. Số tiếp tuyến chung của hai đồ thị \(\left( {{C_1}} \right):y = \frac{{{x^4}}}{4} – 2{x^2} + 4\)và \(\left( {{C_2}} \right):y = {x^2} + 4\) là

  12. Phương trình tiếp tuyến với đồ thị hàm số \(y = f(x)\) tại điểm có hoành độ \(x = 1,\) biết \({f^2}(1 + 2x) = x – {f^3}(1 – x)\) là đường thẳng nào sau đây?

  13. Cho hàm số \(y = \frac{{x + 1}}{{x – 1}}\) có đồ thị \(\left( C \right)\). Gọi \(S\) là tập hợp tất cả các giá trị thực của tham số \(a\) để có hai tiếp tuyến của \(\left( C \right)\) qua \(A\left( {a\,;\,2} \right)\) với hệ số góc \({k_1}\), \({k_2}\) thỏa mãn \({k_1} + {k_2} + 10k_1^2.k_2^2 = 0\). Tổng các phần tử của \(S\) bằng
  14. Cho hàm số \(y = \frac{{2x – 1}}{{2x – 2}}\) có đồ thị \(\left( C \right)\). Gọi \(M\left( {{x_0};{y_0}} \right)\) (với \({x_0} > 1\)) là điểm thuộc \(\left( C \right)\), biết tiếp tuyến của \(\left( C \right)\) tại \(M\) cắt tiệm cận đứng và tiệm cận ngang lần lượt tại \(A\) và \(B\) sao cho \({S_{\Delta OIB}} = 8{S_{\Delta OIA}}\) (trong đó \(O\) là gốc tọa độ, \(I\) là giao điểm hai tiệm cận). Tính giá trị của \(S = {x_0} + 4{y_0}.\)
  15. Tìm tất cả các giá trị thực của tham số \(m\) để đồ thị hàm số \(y = {{\rm{e}}^x} + m\) tiếp xúc với đồ thị hàm số \(y = \ln \left( {x + 1} \right)\).

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Bài tập tự luận về hàm số




Booktoan.com (2015 - 2023) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.