• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Hệ Phương Trình - Bài tập tự luận / Đề bài: Giải phương trình: $32x^2+32x=\sqrt{2x+15}+20                                     (1)$

Đề bài: Giải phương trình: $32x^2+32x=\sqrt{2x+15}+20                                     (1)$

Ngày 10/07/2021 Thuộc chủ đề:Hệ Phương Trình - Bài tập tự luận Tag với:Hệ phương trình đối xứng

Đề bài: Giải phương trình: $32x^2+32x=\sqrt{2x+15}+20                                     (1)$

He phuong trinh dai so

Lời giải

Điều kiện: $2x+15 \geq 0: (1) \Leftrightarrow 2(4x+2)^2=\sqrt{2x+15}+28                 (2)$
Đặt $\sqrt{2x+15}=4y+2 \Rightarrow (4y+2)^2=2x+15 $
Điều kiện $2x+15 \geq 0 \Leftrightarrow y \geq -\frac{1}{2}                              (3)$
Phương trình $(2)$ trở thành $(4x+2)^2=2y+15$
Ta có: $\begin{cases}(4x+2)^2=2y+15                    (4) \\ (4y+2)^2=2x+15                  (5) \end{cases}$
Trừ vế theo vế các phương trình $(4),(5)$ có: $(x-y)(8x+8y+9)=0$
$\Leftrightarrow \left[ {\begin{array}{*{20}{c}}
{x=y                             (6-1)}\\
{x=-y-\frac{9}{8}                (6-2)}
\end{array}} \right.$
+ Thay $(6-1)$ vào $(5)$ có $16y^2+14y-11=0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}
{y=\frac{1}{2}}\\
{y=-\frac{11}{8} (L)}
\end{array}} \right.$
Với $y=\frac{1}{2}$, thế vào $(6-1)$ có $x=\frac{1}{2}                 (7)$
+ Thay $(6-2)$ vào $(4)$ có $f(y)=16y^2+18y-\frac{55}{4}=0             (8)$
Để ý: $f(\frac{1}{2})=-\frac{37}{4}Kết hợp với $(3)$ có $y=\frac{-9+\sqrt{221}}{16}$, vào $(6-2)$ có $x=\frac{9+\sqrt{221}}{16}      (9)$
+ Từ $(8),(9) \Rightarrow$ Tập hợp của phương trình $(1)$ là $x=\frac{1}{2}; x=-\frac{9+\sqrt{221}}{16}$

=========
Chuyên mục: Hệ phương trình đối xứng

Bài liên quan:

  1. Giải hệ phương trình \(\left\{ \begin{array}{l}x + y = \sqrt {4z – 1} \\y + z = \sqrt {4x – 1} \\z + x = \sqrt {4y – 1} \end{array} \right.\).
  2. Đề bài: Giải hệ: \(\left\{ \begin{array}{l}x + y + \frac{1}{x} + \frac{1}{y} = 4\\{x^2} + {y^2} + \frac{1}{{{x^2}}} + \frac{1}{{{y^2}}} = 4\end{array} \right.\)
  3. Đề bài:    Cho hệ phương trình: \(\begin{cases}xy+x^2=m(y-1) \\ xy+y^2=m(x-1) \end{cases}\)a) Giải hệ phương trình khi \(m=-1\)b) Tìm giá trị của \(m\) để hệ phương trình có nghiệm duy nhất.
  4. Đề bài: Giải hệ phương trình:   $(I) \begin{cases}x+y=a                                (1)\\ x^4+y^4=a^4                                          (2) \end{cases}$
  5. Đề bài:  Giải hệ phương trình \(\left\{ \begin{array}{l}{x^5} + {y^5} = 1\\{x^9} + {y^9} = {x^4} + {y^4}\end{array} \right.\)
  6. Đề bài: Giải phương trình:   $2(2x^2-2x-5)^2-4x^2+3x+5=0                       (1)$
  7. Đề bài: Giải hệ phương trình: \(\left\{ \begin{array}{l}{x^3} = 3x + 8y\\{y^3} = 3y + 8x\end{array} \right.\)
  8. Đề bài: Giải phương trình:  $8x^3+53x=36x^2+\sqrt[3]{3x-5}+25                               (1)$
  9. Đề bài:   Giải hệ phương trình: \(\begin{cases}x+y+xy=3 \\ (x+y)xy=2 \end{cases}\)
  10. Đề bài:   Giải hệ: \(\begin{cases}x^2=13x+4y      (1)\\ y^2=4x+13y       (2)\end{cases}\)  (I)
  11. Đề bài: Giải hệ phương trình \(\left\{ \begin{array}{l}x\sqrt y  + y\sqrt x  = 30\\x\sqrt x  + y\sqrt y  = 35\end{array} \right.\)
  12. Đề bài:   Giải hệ phương trình: \(\begin{cases}xy+x+y= 11\\ x^2y+y^2x=30 \end{cases}\)
  13. Đề bài:   Giải hệ phương trình: \(\begin{cases}x^2+y^2=10 \\ x+y=5 \end{cases}\)
  14. Đề bài:    Giải hệ phương trình:  \(\begin{cases}2x+y=\frac{3}{x^2} \\ 2y+x=\frac{3}{y^2} \end{cases}\)
  15. Đề bài: Giải hệ phương trình \(\left\{ \begin{array}{l}{x^3} + {y^3} = 8\\x + y + 2xy = 2\end{array} \right.\)

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.