• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

Đề bài: Chứng minh rằng:$\tan^{n} A+\tan^{n} B+\tan^{n} C \geq 3 (\sqrt {3})^{n}, \forall n \geq 1 và  \Delta ABC  nhọn$

Đăng ngày: 11/07/2021 Biên tập: admin Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức trong tam giác

Đề bài: Chứng minh rằng:$\tan^{n} A+\tan^{n} B+\tan^{n} C \geq 3 (\sqrt {3})^{n}, \forall n \geq 1 và  \Delta ABC  nhọn$

Bat dang thuc

Lời giải

Đề bài:
Chứng minh rằng:$\tan^{n} A+\tan^{n} B+\tan^{n} C \geq 3 (\sqrt {3})^{n}, \forall n \geq 1 và  \Delta ABC  nhọn$
Lời giải

Xét $f(x)=\tan^{n} x,x \in (0,\frac{\pi}{2})$
$f'(x)=\frac{n.\tan^{n-1} x}{\cos^{2}x}$
$f”(x)=n.\tan^{n-2} x[\sin 2x.\tan x+(n-1)] >0$ ( do $x\in (0;\frac{\pi}{2})$)
$\Rightarrow f$ là hàm số lõm trên $(0,\frac{\pi}{2})$
Theo BĐT Jensen ta có:
$f(A)+f(B)+f(C) \geq 3f(\frac{A+B+C}{3})$
$\Rightarrow \tan^{n} A+\tan^{n} B+\tan^{n} C \geq 3\tan(\frac{A+B+C}{3})^{n}=3 (\sqrt {3})^{n}$
Dấu “=” xảy ra $\Leftrightarrow \triangle  ABC$ đều.
$\Rightarrow $ (ĐPCM)

=========
Chuyên mục: Bất đẳng thức trong tam giác

Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức trong tam giác

Bài liên quan:

  1. Đề bài: Cho tam giác $ABC$  thỏa mãn :                    $\cos A+\cos B+\cos C+\cos 2A+\cos 2B+\cos 2C=0     (1)$Chứng minh $\Delta ABC$ đều.
  2. Đề bài: Cho $a, b, c$ là độ dài các cạnh và $r$ là bán kính đường tròn nội tiếp của một tam giác. Chứng minh rằng: $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} \le \frac{1}{4r^2}$
  3. Đề bài: Chứng minh rằng nếu $a, b, c$ là độ dài ba cạnh của một tam giác có chu vi bằng $3$ thì                             \(3{a^2} + 3{b^2} + 3{c^2} + 4abc \ge 13\)
  4. Đề bài: Cho tam giác $ABC$ thỏa mãn:   $\cos A + \cos B+\cos C =\sin \frac{ A}{ 2} + \sin \frac{ B}{ 2} +\sin \frac{C }{ 2}   (1)$.Chứng minh  $\Delta ABC$ đều.
  5. Đề bài: Cho $a,b,c$ là 3 cạnh tam giác. Chứng minh:$\displaystyle \frac{a}{2b+2c-a}+\frac{b}{2c+2a-b}+\frac{c}{2a+2b-c}\geq 1$
  6. Đề bài: Cho tam giác $ABC$ có các góc $A, B, C$ thỏa mãn hệ thức \({\sin ^2}B + {\sin ^2}C = 2{\sin ^2}A\)Chứng minh rằng \(A \le {60^{0}}\)
  7. Đề bài: Cho tam giác $ABC$ thỏa mãn:                    $\frac{ 1}{a^3+b^3+abc } +\frac{1 }{ b^3+c^3+abc} +\frac{ 1}{ c^3+a^3+abc} = \frac{1 }{ abc}    (1)$. Chứng minh $\Delta ABC$ đều.
  8. Đề bài: Cho tam giác $ABC$ có các cạnh $a, b, c.$Chứng minh $a^2 + b^2 + c^2 < 2(ab + bc + ca)$
  9. Đề bài: Cho $a,b,c$ là độ dài $3$ cạnh $\triangle ABC,a\leq b\leq c$Chứng minh rằng: $\left ( a+b+c \right )^{2}\leq 9bc$
  10. Đề bài: Cho tam giác $ABC$, chứng minh rằng bất đẳng thức:$2\cos C+6\cos A+3\cos B
  11. Đề bài: Cho $\triangle ABC$ có $r,R$ theo thứ tự là bán kính đường tròn nội tiếp và ngoại tiếp, chứng minh rằng:  $\frac{r}{R}\leq \frac{1}{2}$
  12. Đề bài: Chứng minh rằng nếu $a, b, c$ là độ dài ba cạnh của một tam giác có chu vi bằng $3$ thì                             \(3{a^2} + 3{b^2} + 3{c^2} + 4abc \ge 13\)
  13. Đề bài:  Cho $a,b,c$ là độ dài các cạnh tam giác, chứng minh:         $Q=a^9b(a-b)+b^9c(b-c)+c^9a(c-a) \geq 0$
  14. Đề bài: Chứng minh rằng trong mọi tam giác $ABC$ nhọn ta đều có:             $\frac{2}{3}(\sin A+\sin B+\sin C)+\frac{1}{3}(\tan A+\tan B+\tan C)> \pi$.
  15. Đề bài: Gọi $a,b,c$ là độ dài các cạnh $\Delta ABC$. Tìm giá trị nhỏ nhất của biểu thức                                          $Q=\frac{aA+bB+cC}{a+b+c}$

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2023) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.