adsense
Câu hỏi:
Cho số phức \(z\) thoả mãn \(\left| {z – 1 + 2i} \right| = 2\). Tìm giá trị lớn nhất của biểu thức \(P = {\left| {z – 2 – 3i} \right|^2} + {\left| {z – 5i} \right|^2}\).
A. \({P_{\max }} = 96\).
B. \({P_{\max }} = 66\).
C. \({P_{\max }} = 152\).
D. \({P_{\max }} = 132\).
LỜI GIẢI CHI TIẾT:
Gọi \(M\left( {x;y} \right);I\left( {1; – 2} \right)\) lần lượt là điểm biểu diễn của các số phức \(z\) và \(1 – 2i\).
\(\left| {z – 1 + 2i} \right| = 2\)\( \Rightarrow M\) thuộc đường tròn tâm \(I\), bán kính \(R = 2\).
Gọi \(A\left( {2;3} \right);B\left( {0;5} \right)\) lần lượt là điểm biểu diễn của các số phức \(2 + 3i\) và \(5i\).
\(P = {\left| {z – 2 – 3i} \right|^2} + {\left| {z – 5i} \right|^2} = M{A^2} + M{B^2}\)\( = 2M{H^2} + \frac{{A{B^2}}}{2}\) (với \(H\left( {1;4} \right)\) là trung điểm của \(AB\)).
Cho số phức \(z\) thoả mãn \(\left| {z – 1 + 2i} \right| = 2\). Tìm giá trị lớn nhất của biểu thức \(P = {\left| {z – 2 – 3i} \right|^2} + {\left| {z – 5i} \right|^2}\).
Đăng ngày: Biên tập: Thuộc chủ đề:Trắc nghiệm Cực trị Số phức, Trắc nghiệm Số phức
Trả lời